Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

1.

Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials.

Kim SK, Kim YK, Lee H, Lee SB, Park HS.

ChemSusChem. 2014 Apr;7(4):1094-101. doi: 10.1002/cssc.201301061. Epub 2014 Feb 23.

PMID:
24678040
[PubMed - indexed for MEDLINE]
2.

Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors.

Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z.

Nano Lett. 2011 Jul 13;11(7):2905-11. doi: 10.1021/nl2013828. Epub 2011 Jun 13.

PMID:
21667923
[PubMed - indexed for MEDLINE]
3.

Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks.

Milczarek G, Inganäs O.

Science. 2012 Mar 23;335(6075):1468-71. doi: 10.1126/science.1215159.

PMID:
22442478
[PubMed - indexed for MEDLINE]
Free Article
4.

Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors.

Choi BG, Huh YS, Hong WH, Erickson D, Park HS.

Nanoscale. 2013 May 7;5(9):3976-81. doi: 10.1039/c3nr33674c. Epub 2013 Apr 2.

PMID:
23545560
[PubMed - indexed for MEDLINE]
5.

Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.

Rauda IE, Augustyn V, Dunn B, Tolbert SH.

Acc Chem Res. 2013 May 21;46(5):1113-24. doi: 10.1021/ar300167h. Epub 2013 Mar 13.

PMID:
23485203
[PubMed]
6.

Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.

He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E.

ACS Nano. 2013 Jan 22;7(1):174-82. doi: 10.1021/nn304833s. Epub 2012 Dec 31.

PMID:
23249211
[PubMed - indexed for MEDLINE]
7.

Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors.

Zhao X, Zhang L, Murali S, Stoller MD, Zhang Q, Zhu Y, Ruoff RS.

ACS Nano. 2012 Jun 26;6(6):5404-12. doi: 10.1021/nn3012916. Epub 2012 May 10.

PMID:
22554307
[PubMed - indexed for MEDLINE]
8.

Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.

Zhang H, Bhat VV, Gallego NC, Contescu CI.

ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3239-46. doi: 10.1021/am300593k. Epub 2012 Jun 18.

PMID:
22680779
[PubMed - indexed for MEDLINE]
9.

Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors.

Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS.

Sci Rep. 2014 Mar 25;4:4452. doi: 10.1038/srep04452.

PMID:
24663242
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Microtube bundle carbon derived from Paulownia sawdust for hybrid supercapacitor electrodes.

Liu X, Zheng M, Xiao Y, Yang Y, Yang L, Liu Y, Lei B, Dong H, Zhang H, Fu H.

ACS Appl Mater Interfaces. 2013 Jun 12;5(11):4667-77. doi: 10.1021/am4012808. Epub 2013 May 29.

PMID:
23688158
[PubMed - indexed for MEDLINE]
11.

Pseudocapacitive hausmannite nanoparticles with (101) facets: synthesis, characterization, and charge-transfer mechanism.

Yeager MP, Du W, Wang Q, Deskins NA, Sullivan M, Bishop B, Su D, Xu W, Senanayake SD, Si R, Hanson J, Teng X.

ChemSusChem. 2013 Oct;6(10):1983-92. doi: 10.1002/cssc.201300027. Epub 2013 May 3.

PMID:
23650213
[PubMed - indexed for MEDLINE]
12.

Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.

Lei Z, Shi F, Lu L.

ACS Appl Mater Interfaces. 2012 Feb;4(2):1058-64. doi: 10.1021/am2016848. Epub 2012 Feb 6.

PMID:
22264121
[PubMed - indexed for MEDLINE]
13.

Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.

Chou TC, Doong RA, Hu CC, Zhang B, Su DS.

ChemSusChem. 2014 Mar;7(3):841-7. doi: 10.1002/cssc.201301014. Epub 2014 Feb 6.

PMID:
24504702
[PubMed - indexed for MEDLINE]
14.

Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

Sarker AK, Hong JD.

Langmuir. 2012 Aug 28;28(34):12637-46. doi: 10.1021/la3021589. Epub 2012 Aug 16.

PMID:
22866750
[PubMed - indexed for MEDLINE]
15.

High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

Luan F, Wang G, Ling Y, Lu X, Wang H, Tong Y, Liu XX, Li Y.

Nanoscale. 2013 Sep 7;5(17):7984-90. doi: 10.1039/c3nr02710d.

PMID:
23864110
[PubMed - indexed for MEDLINE]
16.

Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction.

Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H.

Nat Mater. 2011 Oct;10(10):780-6. doi: 10.1038/nmat3087.

PMID:
21822263
[PubMed - indexed for MEDLINE]
17.

Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

Nolan H, Mendoza-Sanchez B, Ashok Kumar N, McEvoy N, O'Brien S, Nicolosi V, Duesberg GS.

Phys Chem Chem Phys. 2014 Feb 14;16(6):2280-4. doi: 10.1039/c3cp54877e.

PMID:
24418938
[PubMed - indexed for MEDLINE]
18.

Carbon-based electrochemical capacitors.

Ghosh A, Lee YH.

ChemSusChem. 2012 Mar 12;5(3):480-99. doi: 10.1002/cssc.201100645. Epub 2012 Mar 2. Review.

PMID:
22389329
[PubMed - indexed for MEDLINE]
19.

Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.

You B, Li N, Zhu H, Zhu X, Yang J.

ChemSusChem. 2013 Mar;6(3):474-80. doi: 10.1002/cssc.201200709. Epub 2013 Feb 18.

PMID:
23417925
[PubMed - indexed for MEDLINE]
20.

Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.

Liu R, Duay J, Lee SB.

ACS Nano. 2010 Jul 27;4(7):4299-307. doi: 10.1021/nn1010182.

PMID:
20590128
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk