Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

A Lotus japonicus mutant defective in nitrate uptake is also affected in the nitrate response to nodulation.

Pal'ove-Balang P, García-Calderón M, Pérez-Delgado CM, Pavlovkin J, Betti M, Márquez AJ.

Plant Biol (Stuttg). 2015 Jan;17(1):16-25. doi: 10.1111/plb.12169. Epub 2014 Mar 26.

PMID:
24673996
2.

Nitrate assimilation in Lotus japonicus.

Márquez AJ, Betti M, García-Calderón M, Pal'ove-Balang P, Díaz P, Monza J.

J Exp Bot. 2005 Jul;56(417):1741-9. Epub 2005 May 23. Review.

3.

Grafting analysis indicates that malfunction of TRICOT in the root causes a nodulation-deficient phenotype in Lotus japonicus.

Suzaki T, Kawaguchi M.

Plant Signal Behav. 2013 Mar;8(3):e23497. doi: 10.4161/psb.23497. Epub 2013 Jan 18.

4.

Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation.

Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R.

Plant Cell Physiol. 2014 May;55(5):928-41. doi: 10.1093/pcp/pcu024. Epub 2014 Feb 2.

PMID:
24492255
5.

Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia.

Tirichine L, James EK, Sandal N, Stougaard J.

Mol Plant Microbe Interact. 2006 Apr;19(4):373-82.

6.

Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus.

Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho K, Hashiguchi M, Akashi R, Hirsch AM, Arima S, Suzuki A.

Plant Physiol. 2009 Dec;151(4):1965-76. doi: 10.1104/pp.109.142638. Epub 2009 Sep 23.

7.

Dissection of symbiosis and organ development by integrated transcriptome analysis of lotus japonicus mutant and wild-type plants.

Høgslund N, Radutoiu S, Krusell L, Voroshilova V, Hannah MA, Goffard N, Sanchez DH, Lippold F, Ott T, Sato S, Tabata S, Liboriussen P, Lohmann GV, Schauser L, Weiller GF, Udvardi MK, Stougaard J.

PLoS One. 2009 Aug 7;4(8):e6556. doi: 10.1371/journal.pone.0006556.

8.

Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes.

Ooki Y, Banba M, Yano K, Maruya J, Sato S, Tabata S, Saeki K, Hayashi M, Kawaguchi M, Izui K, Hata S.

Plant Physiol. 2005 Apr;137(4):1261-71. Epub 2005 Mar 25.

9.

Root-determined hypernodulation mutant of Lotus japonicus shows high-yielding characteristics.

Yokota K, Li YY, Hisatomi M, Wang Y, Ishikawa K, Liu CT, Suzuki S, Aonuma K, Aono T, Nakamoto T, Oyaizu H.

Biosci Biotechnol Biochem. 2009 Jul;73(7):1690-2. Epub 2009 Jul 7.

10.

Knockdown of LjIPT3 influences nodule development in Lotus japonicus.

Chen Y, Chen W, Li X, Jiang H, Wu P, Xia K, Yang Y, Wu G.

Plant Cell Physiol. 2014 Jan;55(1):183-93. doi: 10.1093/pcp/pct171. Epub 2013 Nov 26.

PMID:
24285753
11.

Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil.

García I, Mendoza R.

Plant Biol (Stuttg). 2012 Nov;14(6):964-71. doi: 10.1111/j.1438-8677.2012.00581.x. Epub 2012 Apr 18.

PMID:
22512871
12.

Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling.

Suzuki A, Suriyagoda L, Shigeyama T, Tominaga A, Sasaki M, Hiratsuka Y, Yoshinaga A, Arima S, Agarie S, Sakai T, Inada S, Jikumaru Y, Kamiya Y, Uchiumi T, Abe M, Hashiguchi M, Akashi R, Sato S, Kaneko T, Tabata S, Hirsch AM.

Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16837-42. doi: 10.1073/pnas.1105892108. Epub 2011 Sep 19.

13.

plenty, a novel hypernodulation mutant in Lotus japonicus.

Yoshida C, Funayama-Noguchi S, Kawaguchi M.

Plant Cell Physiol. 2010 Sep;51(9):1425-35. doi: 10.1093/pcp/pcq115. Epub 2010 Aug 23.

PMID:
20732950
14.

Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules.

Kato K, Okamura Y, Kanahama K, Kanayama Y.

J Exp Bot. 2003 Jul;54(388):1685-90. Epub 2003 May 28.

15.

The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia.

Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M.

Plant Physiol. 2009 Apr;149(4):1785-96. doi: 10.1104/pp.108.135160. Epub 2009 Jan 28.

16.
17.

Shoot HAR1 mediates nitrate inhibition of nodulation in Lotus japonicus.

Okamoto S, Kawaguchi M.

Plant Signal Behav. 2015;10(5):e1000138. doi: 10.1080/15592324.2014.1000138.

18.

Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter.

Bagchi R, Salehin M, Adeyemo OS, Salazar C, Shulaev V, Sherrier DJ, Dickstein R.

Plant Physiol. 2012 Oct;160(2):906-16. doi: 10.1104/pp.112.196444. Epub 2012 Aug 2.

20.

Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus.

Chen W, Li X, Tian L, Wu P, Li M, Jiang H, Chen Y, Wu G.

J Integr Plant Biol. 2014 Nov;56(11):1034-41. doi: 10.1111/jipb.12211. Epub 2014 Jun 19.

PMID:
24797909
Items per page

Supplemental Content

Write to the Help Desk