Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 291

1.

Genome-wide analysis of water-stress-responsive microRNA expression profile in tobacco roots.

Yin F, Gao J, Liu M, Qin C, Zhang W, Yang A, Xia M, Zhang Z, Shen Y, Lin H, Luo C, Pan G.

Funct Integr Genomics. 2014 Jun;14(2):319-32. doi: 10.1007/s10142-014-0365-4. Epub 2014 Mar 25.

PMID:
24664280
2.

Differential expression of miRNAs in response to topping in flue-cured tobacco (Nicotiana tabacum) roots.

Guo H, Kan Y, Liu W.

PLoS One. 2011;6(12):e28565. doi: 10.1371/journal.pone.0028565. Epub 2011 Dec 14.

3.

Identification and characterisation of tobacco microRNA transcriptome using high-throughput sequencing.

Gao J, Yin F, Liu M, Luo M, Qin C, Yang A, Yang S, Zhang Z, Shen Y, Lin H, Pan G.

Plant Biol (Stuttg). 2015 May;17(3):591-8. doi: 10.1111/plb.12275. Epub 2015 Jan 21.

PMID:
25287651
4.

Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots.

Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L.

J Exp Bot. 2013 Nov;64(14):4271-87. doi: 10.1093/jxb/ert240. Epub 2013 Sep 7.

5.

Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions.

Chen LM, Zhou XA, Li WB, Chang W, Zhou R, Wang C, Sha AH, Shan ZH, Zhang CJ, Qiu de Z, Yang ZL, Chen SL.

BMC Genomics. 2013 Oct 6;14:687. doi: 10.1186/1471-2164-14-687.

6.

Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response.

Zhang Q, Zhao C, Li M, Sun W, Liu Y, Xia H, Sun M, Li A, Li C, Zhao S, Hou L, Picimbon JF, Wang X, Zhao Y.

BMC Plant Biol. 2013 Nov 15;13:180. doi: 10.1186/1471-2229-13-180.

7.

Genome-wide identification and analysis of drought-responsive genes and microRNAs in tobacco.

Yin F, Qin C, Gao J, Liu M, Luo X, Zhang W, Liu H, Liao X, Shen Y, Mao L, Zhang Z, Lin H, Lübberstedt T, Pan G.

Int J Mol Sci. 2015 Mar 12;16(3):5714-40. doi: 10.3390/ijms16035714.

8.

High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea.

Feng J, Wang J, Fan P, Jia W, Nie L, Jiang P, Chen X, Lv S, Wan L, Chang S, Li S, Li Y.

BMC Plant Biol. 2015 Feb 26;15:63. doi: 10.1186/s12870-015-0451-3.

9.

Comprehensive analysis of differential genes and miRNA profiles for discovery of topping-responsive genes in flue-cured tobacco roots.

Qi Y, Guo H, Li K, Liu W.

FEBS J. 2012 Mar;279(6):1054-70. doi: 10.1111/j.1742-4658.2012.08497.x. Epub 2012 Feb 20.

10.

Identification of novel soybean microRNAs involved in abiotic and biotic stresses.

Kulcheski FR, de Oliveira LF, Molina LG, Almerão MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimarães FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GA, Margis R.

BMC Genomics. 2011 Jun 10;12:307. doi: 10.1186/1471-2164-12-307.

11.

Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots.

Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C.

PLoS One. 2011;6(11):e28009. doi: 10.1371/journal.pone.0028009. Epub 2011 Nov 23.

12.

Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).

Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K, Liu L.

BMC Genomics. 2015 Mar 17;16:197. doi: 10.1186/s12864-015-1416-5.

13.

microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.).

Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L, Menossi M.

PLoS One. 2012;7(10):e46703. doi: 10.1371/journal.pone.0046703. Epub 2012 Oct 11.

14.

Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells.

Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y.

Ann Bot. 2008 Oct;102(4):509-19. doi: 10.1093/aob/mcn129. Epub 2008 Jul 31.

15.

A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber.

Mao W, Li Z, Xia X, Li Y, Yu J.

PLoS One. 2012;7(3):e33040. doi: 10.1371/journal.pone.0033040. Epub 2012 Mar 30.

16.

Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium.

Zhou ZS, Song JB, Yang ZM.

J Exp Bot. 2012 Jul;63(12):4597-613. doi: 10.1093/jxb/ers136. Epub 2012 Jul 3.

17.

Expression of microRNAs and their targets regulates floral development in tobacco (Nicotiana tabacum).

Burklew CE, Xie F, Ashlock J, Zhang B.

Funct Integr Genomics. 2014 Jun;14(2):299-306. doi: 10.1007/s10142-014-0359-2. Epub 2014 Jan 22.

PMID:
24448659
18.

High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane.

Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PC.

PLoS One. 2013;8(3):e59423. doi: 10.1371/journal.pone.0059423. Epub 2013 Mar 27.

19.

Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.

Sun Z, He Y, Li J, Wang X, Chen J.

Plant Cell Physiol. 2015 Apr;56(4):688-99. doi: 10.1093/pcp/pcu213. Epub 2014 Dec 21.

PMID:
25535197
20.

Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.

Chen L, Wang T, Zhao M, Tian Q, Zhang WH.

Planta. 2012 Feb;235(2):375-86. doi: 10.1007/s00425-011-1514-9. Epub 2011 Sep 10.

PMID:
21909758
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk