Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 104

Similar articles for PubMed (Select 24659045)

2.

Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase.

Lee WH, Nan H, Kim HJ, Jin YS.

J Biotechnol. 2013 Sep 10;167(3):316-22. doi: 10.1016/j.jbiotec.2013.06.016. Epub 2013 Jul 5.

PMID:
23835155
3.

Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera beta-glucosidase.

Jeon E, Hyeon Je, Eun LS, Park BS, Kim SW, Lee J, Han SO.

FEMS Microbiol Lett. 2009 Nov;301(1):130-6. doi: 10.1111/j.1574-6968.2009.01808.x. Epub 2009 Oct 1.

4.

Kinetics of beta-glucosidase production by Saccharomyces cerevisiae recombinants harboring heterologous bgl genes.

Rajoka MI, Shaukat F, Ghauri MT, Shahid R.

Biotechnol Lett. 2003 Jun;25(12):945-8.

PMID:
12889828
6.

Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.

Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H.

Microb Cell Fact. 2012 Apr 1;11:40. doi: 10.1186/1475-2859-11-40.

7.

Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.

Saitoh S, Tanaka T, Kondo A.

Appl Microbiol Biotechnol. 2011 Sep;91(6):1553-9. doi: 10.1007/s00253-011-3357-5. Epub 2011 Jun 4.

PMID:
21643701
8.

Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes.

Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, Bradley M, Megson IL, Donaldson K.

Part Fibre Toxicol. 2011 Sep 6;8:27. doi: 10.1186/1743-8977-8-27.

9.

Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.

Guo ZP, Zhang L, Ding ZY, Gu ZH, Shi GY.

Enzyme Microb Technol. 2011 Jun 10;49(1):105-12. doi: 10.1016/j.enzmictec.2011.02.008. Epub 2011 Mar 3.

PMID:
22112279
10.
11.

Enhancement of beta-glucosidase activity on the cell-surface of sake yeast by disruption of SED1.

Kotaka A, Sahara H, Kuroda K, Kondo A, Ueda M, Hata Y.

J Biosci Bioeng. 2010 May;109(5):442-6. doi: 10.1016/j.jbiosc.2009.11.003. Epub 2009 Dec 4.

PMID:
20347765
12.

Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L, Campos-García J.

J Biosci Bioeng. 2012 May;113(5):614-8. doi: 10.1016/j.jbiosc.2011.12.015. Epub 2012 Jan 26.

PMID:
22280963
13.

Industrial-scale production and rapid purification of an archaeal beta-glycosidase expressed in Saccharomyces cerevisiae.

Morana A, Moracci M, Ottombrino A, Ciaramella M, Rossi M, De Rosa M.

Biotechnol Appl Biochem. 1995 Dec;22 ( Pt 3):261-8.

PMID:
8573288
14.

Cloning and expression of beta-glucosidase genes in Escherichia coli and Saccharomyces cerevisiae using shuttle vector pYES 2.0.

Rajoka MI, Bashir A, Hussain SR, Ghauri MT, Parvez S, Malik KA.

Folia Microbiol (Praha). 1998;43(2):129-35.

PMID:
9721604
15.

Breeding of industrial diploid yeast strain with chromosomal integration of multiple beta-glucosidase genes.

Saitoh S, Tanaka T, Kondo A.

J Biosci Bioeng. 2008 Dec;106(6):594-7. doi: 10.1263/jbb.106.594.

16.

Fungal β-glucosidase expression in Saccharomyces cerevisiae.

Njokweni AP, Rose SH, van Zyl WH.

J Ind Microbiol Biotechnol. 2012 Oct;39(10):1445-52. Epub 2012 Jun 16.

PMID:
22707073
17.

Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose.

Zhang L, Guo ZP, Ding ZY, Wang ZX, Shi GY.

Prikl Biokhim Mikrobiol. 2012 Mar-Apr;48(2):243-8.

PMID:
22586919
18.

Biosynthesis regulation of the beta-glucosidase produced by a yeast strain transformed by genetic engineering.

Leclerc M, Chemardin P, Arnaud A, Ratomahenina R, Galzy P, Gerbaud C, Raynal A.

Arch Microbiol. 1986 Nov;146(2):115-7.

PMID:
3099720
19.

Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress.

Trevisan R, Delapedra G, Mello DF, Arl M, Schmidt ÉC, Meder F, Monopoli M, Cargnin-Ferreira E, Bouzon ZL, Fisher AS, Sheehan D, Dafre AL.

Aquat Toxicol. 2014 Aug;153:27-38. doi: 10.1016/j.aquatox.2014.03.018. Epub 2014 Apr 1.

PMID:
24745718
20.

Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.

Matsushika A, Sawayama S.

Enzyme Microb Technol. 2011 May 6;48(6-7):466-71. doi: 10.1016/j.enzmictec.2011.02.002. Epub 2011 Mar 2.

PMID:
22113018
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk