Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 96

Similar articles for PubMed (Select 24658264)

1.

Synthesis of CVD-graphene on rapidly heated copper foils.

Kim SM, Kim JH, Kim KS, Hwangbo Y, Yoon JH, Lee EK, Ryu J, Lee HJ, Cho S, Lee SM.

Nanoscale. 2014 May 7;6(9):4728-34. doi: 10.1039/c3nr06434d.

PMID:
24658264
2.

Designed CVD growth of graphene via process engineering.

Yan K, Fu L, Peng H, Liu Z.

Acc Chem Res. 2013 Oct 15;46(10):2263-74.

PMID:
23869401
3.

Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.

Lee D, Kwon GD, Kim JH, Moyen E, Lee YH, Baik S, Pribat D.

Nanoscale. 2014 Nov 7;6(21):12943-51. doi: 10.1039/c4nr03633f.

PMID:
25233143
4.

Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin HJ, Baik J, Choi HC.

ACS Nano. 2013 Aug 27;7(8):6575-82. doi: 10.1021/nn402847w. Epub 2013 Jul 24.

PMID:
23869700
5.

Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition.

Procházka P, Mach J, Bischoff D, Lišková Z, Dvořák P, Vaňatka M, Simonet P, Varlet A, Hemzal D, Petrenec M, Kalina L, Bartošík M, Ensslin K, Varga P, Čechal J, Šikola T.

Nanotechnology. 2014 May 9;25(18):185601. doi: 10.1088/0957-4484/25/18/185601. Epub 2014 Apr 16.

PMID:
24739598
6.

Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films.

Piazzi M, Croin L, Vittone E, Amato G.

Springerplus. 2012 Dec;1(1):52. doi: 10.1186/2193-1801-1-52. Epub 2012 Nov 27.

7.

Chemical vapor deposition of graphene single crystals.

Yan Z, Peng Z, Tour JM.

Acc Chem Res. 2014 Apr 15;47(4):1327-37. doi: 10.1021/ar4003043. Epub 2014 Feb 17.

PMID:
24527957
8.

Effect of post-annealing on the plasma etching of graphene-coated-copper.

Hui LS, Whiteway E, Hilke M, Turak A.

Faraday Discuss. 2014;173:79-93. doi: 10.1039/c4fd00118d.

PMID:
25465275
9.

Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth.

Wang L, Zhang X, Chan HL, Yan F, Ding F.

J Am Chem Soc. 2013 Mar 20;135(11):4476-82. doi: 10.1021/ja312687a. Epub 2013 Mar 11.

PMID:
23444843
10.

Graphene synthesis via magnetic inductive heating of copper substrates.

Piner R, Li H, Kong X, Tao L, Kholmanov IN, Ji H, Lee WH, Suk JW, Ye J, Hao Y, Chen S, Magnuson CW, Ismach AF, Akinwande D, Ruoff RS.

ACS Nano. 2013 Sep 24;7(9):7495-9. doi: 10.1021/nn4031564. Epub 2013 Aug 16.

PMID:
23930903
11.

Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.

Tao L, Lee J, Chou H, Holt M, Ruoff RS, Akinwande D.

ACS Nano. 2012 Mar 27;6(3):2319-25. doi: 10.1021/nn205068n. Epub 2012 Feb 16.

PMID:
22314052
12.

Synthesis of monolayer graphene having a negligible amount of wrinkles by stress relaxation.

Mun JH, Cho BJ.

Nano Lett. 2013 Jun 12;13(6):2496-9. doi: 10.1021/nl4005578. Epub 2013 Jun 3.

PMID:
23713830
13.

Controllable chemical vapor deposition growth of few layer graphene for electronic devices.

Wei D, Wu B, Guo Y, Yu G, Liu Y.

Acc Chem Res. 2013 Jan 15;46(1):106-15. doi: 10.1021/ar300103f. Epub 2012 Jul 19.

PMID:
22809220
14.

Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils.

Zhang B, Lee WH, Piner R, Kholmanov I, Wu Y, Li H, Ji H, Ruoff RS.

ACS Nano. 2012 Mar 27;6(3):2471-6. doi: 10.1021/nn204827h. Epub 2012 Feb 24.

PMID:
22339048
15.

Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.

Wu W, Yu Q, Peng P, Liu Z, Bao J, Pei SS.

Nanotechnology. 2012 Jan 27;23(3):035603. doi: 10.1088/0957-4484/23/3/035603. Epub 2011 Dec 16.

PMID:
22173552
16.

Large-scale quantification of CVD graphene surface coverage.

Ambrosi A, Bonanni A, Sofer Z, Pumera M.

Nanoscale. 2013 Mar 21;5(6):2379-87. doi: 10.1039/c3nr33824j.

PMID:
23396554
17.

The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties.

Ambrosi A, Pumera M.

Nanoscale. 2014 Jan 7;6(1):472-6. doi: 10.1039/c3nr05230c. Epub 2013 Nov 11.

PMID:
24217345
18.

Comparing graphene growth on Cu(111) versus oxidized Cu(111).

Gottardi S, Müller K, Bignardi L, Moreno-López JC, Pham TA, Ivashenko O, Yablonskikh M, Barinov A, Björk J, Rudolf P, Stöhr M.

Nano Lett. 2015 Feb 11;15(2):917-22. doi: 10.1021/nl5036463. Epub 2015 Jan 29.

PMID:
25611528
19.

Catalyst-free growth of quasi-aligned nanorods of single crystal Cu3Mo2O9 and their catalytic properties.

Chu WG, Wang HF, Guo YJ, Zhang LN, Han ZH, Li QQ, Fan SS.

Inorg Chem. 2009 Feb 2;48(3):1243-9. doi: 10.1021/ic801885c.

PMID:
19128151
20.

Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study.

Jeon C, Hwang HN, Lee WG, Jung YG, Kim KS, Park CY, Hwang CC.

Nanoscale. 2013 Sep 7;5(17):8210-4. doi: 10.1039/c3nr01700a.

PMID:
23863869
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk