Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.
2.

Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.

Subramanian M, Qiao WB, Khanam N, Wilkins O, Der SD, Lalich JD, Bognar AL.

Mol Microbiol. 2005 Jul;57(1):53-69.

3.

Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis.

Hong KK, Vongsangnak W, Vemuri GN, Nielsen J.

Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12179-84. doi: 10.1073/pnas.1103219108. Epub 2011 Jun 29.

4.

Cooperative regulation of ADE3 transcription by Gcn4p and Bas1p in Saccharomyces cerevisiae.

Joo YJ, Kim JA, Baek JH, Seong KM, Han KD, Song JM, Choi JY, Kim J.

Eukaryot Cell. 2009 Aug;8(8):1268-77. doi: 10.1128/EC.00116-09. Epub 2009 Jun 12.

6.

Essential role of one-carbon metabolism and Gcn4p and Bas1p transcriptional regulators during adaptation to anaerobic growth of Saccharomyces cerevisiae.

Tsoi BM, Beckhouse AG, Gelling CL, Raftery MJ, Chiu J, Tsoi AM, Lauterbach L, Rogers PJ, Higgins VJ, Dawes IW.

J Biol Chem. 2009 Apr 24;284(17):11205-15. doi: 10.1074/jbc.M809225200. Epub 2009 Feb 18.

7.

Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae.

Papini M, Nookaew I, Uhlén M, Nielsen J.

Microb Cell Fact. 2012 Oct 9;11:136. doi: 10.1186/1475-2859-11-136.

8.

Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose.

Hong KK, Nielsen J.

Metab Eng. 2013 Mar;16:78-86. doi: 10.1016/j.ymben.2013.01.007. Epub 2013 Jan 29.

PMID:
23376593
9.

Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae.

Hernández H, Aranda C, Riego L, González A.

Biochem Biophys Res Commun. 2011 Jan 21;404(3):859-64. doi: 10.1016/j.bbrc.2010.12.075. Epub 2010 Dec 22.

PMID:
21184740
10.

Transcriptional profiling of cross pathway control in Neurospora crassa and comparative analysis of the Gcn4 and CPC1 regulons.

Tian C, Kasuga T, Sachs MS, Glass NL.

Eukaryot Cell. 2007 Jun;6(6):1018-29. Epub 2007 Apr 20.

12.
14.

Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.

Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS.

Biotechnol Bioeng. 2011 Mar;108(3):621-31. doi: 10.1002/bit.22988. Epub 2010 Nov 12.

PMID:
21246509
15.

Gcn4p-mediated transcriptional repression of ribosomal protein genes under amino-acid starvation.

Joo YJ, Kim JH, Kang UB, Yu MH, Kim J.

EMBO J. 2011 Mar 2;30(5):859-72. doi: 10.1038/emboj.2010.332. Epub 2010 Dec 24.

16.

Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast.

Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ.

Mol Cell Biol. 2001 Jul;21(13):4347-68.

17.
18.

Genome-wide inference of transcription factor-DNA binding specificity in cell regeneration using a combination strategy.

Wang X, Zhang A, Ren W, Chen C, Dong J.

Chem Biol Drug Des. 2012 Nov;80(5):734-44. doi: 10.1111/cbdd.12013. Epub 2012 Sep 10.

PMID:
22863142
19.

A feedback circuit between transcriptional activation and self-destruction of Gcn4 separates its metabolic and morphogenic response in diploid yeasts.

Herzog B, Streckfuss-Bömeke K, Braus GH.

J Mol Biol. 2011 Jan 28;405(4):909-25. doi: 10.1016/j.jmb.2010.11.033. Epub 2010 Nov 25.

PMID:
21111745
20.

GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose.

Malakar P, Venkatesh KV.

FEMS Yeast Res. 2014 Mar;14(2):346-56. doi: 10.1111/1567-1364.12109. Epub 2013 Nov 8.

Items per page

Supplemental Content

Write to the Help Desk