Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

Similar articles for PubMed (Select 24652150)

1.

Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

Murad AM, Vianna GR, Machado AM, da Cunha NB, Coelho CM, Lacerda VA, Coelho MC, Rech EL.

Anal Bioanal Chem. 2014 May;406(12):2873-83. doi: 10.1007/s00216-014-7709-8. Epub 2014 Mar 21.

PMID:
24652150
2.

Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F.

Plant Biotechnol J. 2014 Sep;12(7):934-40. doi: 10.1111/pbi.12201. Epub 2014 May 23.

PMID:
24851712
3.

Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.

Pham AT, Lee JD, Shannon JG, Bilyeu KD.

BMC Plant Biol. 2010 Sep 9;10:195. doi: 10.1186/1471-2229-10-195.

4.

RNAi trigger fragment truncation attenuates soybean FAD2-1 transcript suppression and yields intermediate oil phenotypes.

Wagner N, Mroczka A, Roberts PD, Schreckengost W, Voelker T.

Plant Biotechnol J. 2011 Sep;9(7):723-8. doi: 10.1111/j.1467-7652.2010.00573.x. Epub 2010 Nov 18.

PMID:
21083800
5.

Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid.

Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J.

Biotechnol Biofuels. 2012 Feb 29;5(1):10. doi: 10.1186/1754-6834-5-10.

6.

A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content.

Pham AT, Lee JD, Shannon JG, Bilyeu KD.

Theor Appl Genet. 2011 Sep;123(5):793-802. doi: 10.1007/s00122-011-1627-3. Epub 2011 Jun 17.

PMID:
21681491
7.

A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel.

Graef G, LaVallee BJ, Tenopir P, Tat M, Schweiger B, Kinney AJ, Van Gerpen JH, Clemente TE.

Plant Biotechnol J. 2009 Jun;7(5):411-21. doi: 10.1111/j.1467-7652.2009.00408.x. Erratum in: Plant Biotechnol J. 2009 Sep;7(7):717.

PMID:
19490504
8.

Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean.

Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Schweiger B, Kinney A, Staswick P; Tom Clemente.

Plant J. 2002 Apr;30(2):155-63.

PMID:
12000452
9.

Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil.

Pham AT, Shannon JG, Bilyeu KD.

Theor Appl Genet. 2012 Aug;125(3):503-15. doi: 10.1007/s00122-012-1849-z. Epub 2012 Apr 4.

PMID:
22476873
10.

Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds.

Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ.

Phytochemistry. 2006 Jun;67(12):1166-76. Epub 2006 Jun 9.

PMID:
16762380
11.

Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase in transgenic soybean.

Park H, Graef G, Xu Y, Tenopir P, Clemente TE.

Plant Biotechnol J. 2014 Oct;12(8):1035-43. doi: 10.1111/pbi.12209. Epub 2014 Jun 9.

PMID:
24909647
12.

Changes in oleic Acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing.

Zhang L, Yang XD, Zhang YY, Yang J, Qi GX, Guo DQ, Xing GJ, Yao Y, Xu WJ, Li HY, Li QY, Dong YS.

Int J Genomics. 2014;2014:921950. doi: 10.1155/2014/921950. Epub 2014 Aug 13.

13.

Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

Liu WX, Liu HL, Qu le Q.

Theor Appl Genet. 2013 Sep;126(9):2289-97. doi: 10.1007/s00122-013-2135-4. Epub 2013 Jun 8.

PMID:
23748707
14.

Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

Rao SS, Hildebrand D.

Lipids. 2009 Oct;44(10):945-51. doi: 10.1007/s11745-009-3337-z. Epub 2009 Sep 19.

PMID:
19768478
15.

Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

Qin F, Kang L, Guo L, Lin J, Song J, Zhao Y.

J Agric Food Chem. 2012 Mar 7;60(9):2200-4. doi: 10.1021/jf204336a. Epub 2012 Feb 27.

PMID:
22324875
16.

Detection of genetically modified soybean in crude soybean oil.

Nikolić Z, Vasiljević I, Zdjelar G, Ðorđević V, Ignjatov M, Jovičić D, Milošević D.

Food Chem. 2014 Feb 15;145:1072-5. doi: 10.1016/j.foodchem.2013.09.017. Epub 2013 Sep 11.

PMID:
24128586
17.
18.

Effect of sprouting and roasting processes on some physico-chemical properties and mineral contents of soybean seed and oils.

Özcan MM, Al Juhaimi F.

Food Chem. 2014 Jul 1;154:337-42. doi: 10.1016/j.foodchem.2013.12.077. Epub 2014 Jan 2.

PMID:
24518351
19.

Profile and relative concentrations of fatty acids in corn and soybean seeds from transgenic and isogenic crops.

Jiménez JJ, Bernal JL, Nozal MJ, Toribio L, Bernal J.

J Chromatogr A. 2009 Oct 23;1216(43):7288-95. doi: 10.1016/j.chroma.2009.08.015. Epub 2009 Aug 13.

PMID:
19716136
20.

Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean.

Eckert H, La Vallee B, Schweiger BJ, Kinney AJ, Cahoon EB, Clemente T.

Planta. 2006 Oct;224(5):1050-7. Epub 2006 May 23.

PMID:
16718484
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk