Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 94

1.

Antagonizing the αv β3 Integrin Inhibits Angiogenesis and Impairs Woven but Not Lamellar Bone Formation Induced by Mechanical Loading.

Tomlinson RE, Schmieder AH, Quirk JD, Lanza GM, Silva MJ.

J Bone Miner Res. 2014 Sep;29(9):1970-80. doi: 10.1002/jbmr.2223.

PMID:
24644077
[PubMed - in process]
2.

Comparing histological, vascular and molecular responses associated with woven and lamellar bone formation induced by mechanical loading in the rat ulna.

McKenzie JA, Silva MJ.

Bone. 2011 Feb;48(2):250-8. doi: 10.1016/j.bone.2010.09.005. Epub 2010 Sep 22.

PMID:
20849995
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Nitric oxide-mediated vasodilation increases blood flow during the early stages of stress fracture healing.

Tomlinson RE, Shoghi KI, Silva MJ.

J Appl Physiol (1985). 2014 Feb 15;116(4):416-24. doi: 10.1152/japplphysiol.00957.2013. Epub 2013 Dec 19.

PMID:
24356518
[PubMed - in process]
4.

Differential gene expression from microarray analysis distinguishes woven and lamellar bone formation in the rat ulna following mechanical loading.

McKenzie JA, Bixby EC, Silva MJ.

PLoS One. 2011;6(12):e29328. doi: 10.1371/journal.pone.0029328. Epub 2011 Dec 22.

PMID:
22216249
[PubMed - indexed for MEDLINE]
Free PMC Article
5.

Angiogenesis is required for stress fracture healing in rats.

Tomlinson RE, McKenzie JA, Schmieder AH, Wohl GR, Lanza GM, Silva MJ.

Bone. 2013 Jan;52(1):212-9. doi: 10.1016/j.bone.2012.09.035. Epub 2012 Oct 5.

PMID:
23044046
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Stress fracture healing: fatigue loading of the rat ulna induces upregulation in expression of osteogenic and angiogenic genes that mimic the intramembranous portion of fracture repair.

Wohl GR, Towler DA, Silva MJ.

Bone. 2009 Feb;44(2):320-30. doi: 10.1016/j.bone.2008.09.010. Epub 2008 Oct 7.

PMID:
18950737
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.

Lynch JA, Silva MJ.

Bone. 2008 May;42(5):942-9. doi: 10.1016/j.bone.2008.01.004. Epub 2008 Jan 26.

PMID:
18295561
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone.

Uthgenannt BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ.

J Bone Miner Res. 2007 Oct;22(10):1548-56.

PMID:
17576168
[PubMed - indexed for MEDLINE]
Free PMC Article
9.

Damaging fatigue loading stimulates increases in periosteal vascularity at sites of bone formation in the rat ulna.

Matsuzaki H, Wohl GR, Novack DV, Lynch JA, Silva MJ.

Calcif Tissue Int. 2007 Jun;80(6):391-9. Epub 2007 Jun 6.

PMID:
17551770
[PubMed - indexed for MEDLINE]
Free PMC Article
10.
11.

Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.

Lee KC, Maxwell A, Lanyon LE.

Bone. 2002 Sep;31(3):407-12.

PMID:
12231414
[PubMed - indexed for MEDLINE]
12.

Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6.

Holguin N, Brodt MD, Sanchez ME, Silva MJ.

Bone. 2014 Aug;65:83-91. doi: 10.1016/j.bone.2014.05.006. Epub 2014 May 15.

PMID:
24836737
[PubMed - in process]
13.

Mechanical loading thresholds for lamellar and woven bone formation.

Turner CH, Forwood MR, Rho JY, Yoshikawa T.

J Bone Miner Res. 1994 Jan;9(1):87-97.

PMID:
8154314
[PubMed - indexed for MEDLINE]
14.

Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.

Silva MJ, Touhey DC.

J Orthop Res. 2007 Feb;25(2):252-61.

PMID:
17106875
[PubMed - indexed for MEDLINE]
15.

Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.

Kotha SP, Hsieh YF, Strigel RM, Müller R, Silva MJ.

J Biomech. 2004 Apr;37(4):541-8.

PMID:
14996566
[PubMed - indexed for MEDLINE]
16.

Growth hormone is permissive for skeletal adaptation to mechanical loading.

Forwood MR, Li L, Kelly WL, Bennett MB.

J Bone Miner Res. 2001 Dec;16(12):2284-90.

PMID:
11760843
[PubMed - indexed for MEDLINE]
17.

Induction of bone formation in rat tail vertebrae by mechanical loading.

Chambers TJ, Evans M, Gardner TN, Turner-Smith A, Chow JW.

Bone Miner. 1993 Feb;20(2):167-78.

PMID:
8453332
[PubMed - indexed for MEDLINE]
18.

Bone morphogenetic protein-7 selectively enhances mechanically induced bone formation.

Cheline AJ, Reddi AH, Martin RB.

Bone. 2002 Nov;31(5):570-4.

PMID:
12477570
[PubMed - indexed for MEDLINE]
19.

Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading.

Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, Stolina M, Turner CH, Robling AG, Plotkin LI, Bellido T.

Bone. 2012 Jan;50(1):209-17. doi: 10.1016/j.bone.2011.10.025. Epub 2011 Oct 30.

PMID:
22075208
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.

Hankenson KD, Ausk BJ, Bain SD, Bornstein P, Gross TS, Srinivasan S.

Bone. 2006 Mar;38(3):310-6. Epub 2005 Nov 14.

PMID:
16290255
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk