Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 162

1.

Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.

Yong YC, Yu YY, Zhang X, Song H.

Angew Chem Int Ed Engl. 2014 Apr 22;53(17):4480-3. doi: 10.1002/anie.201400463. Epub 2014 Mar 18.

PMID:
24644059
2.

Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells.

Yong YC, Dong XC, Chan-Park MB, Song H, Chen P.

ACS Nano. 2012 Mar 27;6(3):2394-400. doi: 10.1021/nn204656d. Epub 2012 Mar 1.

PMID:
22360743
3.

Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes.

Grobbler C, Virdis B, Nouwens A, Harnisch F, Rabaey K, Bond PL.

Syst Appl Microbiol. 2015 Mar;38(2):135-9. doi: 10.1016/j.syapm.2014.11.007. Epub 2014 Nov 29.

PMID:
25523930
4.

The utility of Shewanella japonica for microbial fuel cells.

Biffinger JC, Fitzgerald LA, Ray R, Little BJ, Lizewski SE, Petersen ER, Ringeisen BR, Sanders WC, Sheehan PE, Pietron JJ, Baldwin JW, Nadeau LJ, Johnson GR, Ribbens M, Finkel SE, Nealson KH.

Bioresour Technol. 2011 Jan;102(1):290-7. doi: 10.1016/j.biortech.2010.06.078.

PMID:
20663660
5.

Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells.

Yu YY, Chen HL, Yong YC, Kim DH, Song H.

Chem Commun (Camb). 2011 Dec 28;47(48):12825-7. doi: 10.1039/c1cc15874k. Epub 2011 Nov 2.

PMID:
22048750
6.

Relationship between surface chemistry, biofilm structure, and electron transfer in Shewanella anodes.

Artyushkova K, Cornejo JA, Ista LK, Babanova S, Santoro C, Atanassov P, Schuler AJ.

Biointerphases. 2015 Mar 5;10(1):019013. doi: 10.1116/1.4913783.

PMID:
25743616
7.

Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities.

McLean JS, Wanger G, Gorby YA, Wainstein M, McQuaid J, Ishii SI, Bretschger O, Beyenal H, Nealson KH.

Environ Sci Technol. 2010 Apr 1;44(7):2721-7. doi: 10.1021/es903043p.

PMID:
20199066
8.

Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance.

Cercado B, Cházaro-Ruiz LF, Ruiz V, López-Prieto Ide J, Buitrón G, Razo-Flores E.

Biosens Bioelectron. 2013 Dec 15;50:373-81. doi: 10.1016/j.bios.2013.06.051. Epub 2013 Jul 4.

PMID:
23891866
9.

Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10.

Roy JN, Luckarift HR, Sizemore SR, Farrington KE, Lau C, Johnson GR, Atanassov P.

Enzyme Microb Technol. 2013 Jul 10;53(2):123-7. doi: 10.1016/j.enzmictec.2013.03.014. Epub 2013 Apr 23.

PMID:
23769313
10.

Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential.

Carmona-Martínez AA, Harnisch F, Kuhlicke U, Neu TR, Schröder U.

Bioelectrochemistry. 2013 Oct;93:23-9. doi: 10.1016/j.bioelechem.2012.05.002. Epub 2012 May 12.

PMID:
22658509
11.

Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode.

Jain A, Zhang X, Pastorella G, Connolly JO, Barry N, Woolley R, Krishnamurthy S, Marsili E.

Bioelectrochemistry. 2012 Oct;87:28-32. doi: 10.1016/j.bioelechem.2011.12.012. Epub 2012 Jan 5.

PMID:
22281091
12.

Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells.

Yang L, Wang S, Peng S, Jiang H, Zhang Y, Deng W, Tan Y, Ma M, Xie Q.

Chemistry. 2015 Jul 20;21(30):10634-8. doi: 10.1002/chem.201501772. Epub 2015 Jun 19.

PMID:
26095648
13.

Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

Yang Y, Xiang Y, Sun G, Wu WM, Xu M.

Environ Sci Technol. 2015 Jan 6;49(1):196-202. doi: 10.1021/es504546g. Epub 2014 Dec 22.

PMID:
25495895
14.

Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems.

Zhou S, Tang J, Yuan Y.

Bioelectrochemistry. 2015 Apr;102:29-34. doi: 10.1016/j.bioelechem.2014.11.005. Epub 2014 Nov 29.

PMID:
25483997
15.

Sampling natural biofilms: a new route to build efficient microbial anodes.

Erable B, Roncato MA, Achouak W, Bergel A.

Environ Sci Technol. 2009 May 1;43(9):3194-9.

PMID:
19534134
16.

Graphene-modified electrodes for enhancing the performance of microbial fuel cells.

Yuan H, He Z.

Nanoscale. 2015 Apr 28;7(16):7022-9. doi: 10.1039/c4nr05637j. Review.

PMID:
25465393
17.

Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells.

Yuan Y, Zhou S, Zhao B, Zhuang L, Wang Y.

Bioresour Technol. 2012 Jul;116:453-8. doi: 10.1016/j.biortech.2012.03.118. Epub 2012 Apr 6.

PMID:
22534371
18.

Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.

Yang Y, Sun G, Guo J, Xu M.

Bioresour Technol. 2011 Jul;102(14):7093-8. doi: 10.1016/j.biortech.2011.04.073. Epub 2011 Apr 28.

PMID:
21571526
19.

A 3D mesoporous polysulfone-carbon nanotube anode for enhanced bioelectricity output in microbial fuel cells.

Nguyen TH, Yu YY, Wang X, Wang JY, Song H.

Chem Commun (Camb). 2013 Nov 25;49(91):10754-6. doi: 10.1039/c3cc45775c.

PMID:
24108240
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk