Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 91

Similar articles for PubMed (Select 24626393)

1.

A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

Vato A, Szymanski FD, Semprini M, Mussa-Ivaldi FA, Panzeri S.

PLoS One. 2014 Mar 13;9(3):e91677. doi: 10.1371/journal.pone.0091677. eCollection 2014.

2.

Dynamic Brain-Machine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems.

Szymanski FD, Semprini M, Mussa-Ivaldi FA, Fadiga L, Panzeri S, Vato A.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4592-5. doi: 10.1109/IEMBS.2011.6091137.

PMID:
22255360
3.

Shaping the dynamics of a bidirectional neural interface.

Vato A, Semprini M, Maggiolini E, Szymanski FD, Fadiga L, Panzeri S, Mussa-Ivaldi FA.

PLoS Comput Biol. 2012;8(7):e1002578. doi: 10.1371/journal.pcbi.1002578. Epub 2012 Jul 19.

4.

Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces.

Wang Y, Principe JC.

J Neural Eng. 2010 Oct;7(5):056010. doi: 10.1088/1741-2560/7/5/056010. Epub 2010 Sep 14.

PMID:
20841635
5.

Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.

Rebesco JM, Miller LE.

Prog Brain Res. 2011;192:83-102. doi: 10.1016/B978-0-444-53355-5.00006-3. Review.

PMID:
21763520
6.

Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.

Wang Y, Paiva AR, Príncipe JC, Sanchez JC.

Neural Comput. 2009 Oct;21(10):2894-930. doi: 10.1162/neco.2009.01-08-699.

PMID:
19548797
7.

Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

Liao Y, Li H, Zhang Q, Fan G, Wang Y, Zheng X.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:6513-6. doi: 10.1109/EMBC.2014.6945120.

PMID:
25571488
8.

New Perspectives on the Dialogue between Brains and Machines.

Mussa-Ivaldi FA, Alford ST, Chiappalone M, Fadiga L, Karniel A, Kositsky M, Maggiolini E, Panzeri S, Sanguineti V, Semprini M, Vato A.

Front Neurosci. 2010 Apr 15;4:44. doi: 10.3389/neuro.01.008.2010.

9.

A tensor-product-kernel framework for multiscale neural activity decoding and control.

Li L, Brockmeier AJ, Choi JS, Francis JT, Sanchez JC, Príncipe JC.

Comput Intell Neurosci. 2014;2014:870160. doi: 10.1155/2014/870160. Epub 2014 Apr 14.

10.

Offline decoding of end-point forces using neural ensembles: application to a brain-machine interface.

Gupta R, Ashe J.

IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):254-62. doi: 10.1109/TNSRE.2009.2023290. Epub 2009 Jun 2.

PMID:
19497832
11.

Unscented Kalman filter for brain-machine interfaces.

Li Z, O'Doherty JE, Hanson TL, Lebedev MA, Henriquez CS, Nicolelis MA.

PLoS One. 2009 Jul 15;4(7):e6243. doi: 10.1371/journal.pone.0006243.

12.

Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.

Li Z, O'Doherty JE, Lebedev MA, Nicolelis MA.

Neural Comput. 2011 Dec;23(12):3162-204. doi: 10.1162/NECO_a_00207. Epub 2011 Sep 15.

13.

Dynamic analyses of information encoding in neural ensembles.

Barbieri R, Frank LM, Nguyen DP, Quirk MC, Solo V, Wilson MA, Brown EN.

Neural Comput. 2004 Feb;16(2):277-307.

PMID:
15006097
14.

Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.

Xu K, Wang Y, Wang Y, Wang F, Hao Y, Zhang S, Zhang Q, Chen W, Zheng X.

J Neural Eng. 2013 Apr;10(2):026008. doi: 10.1088/1741-2560/10/2/026008. Epub 2013 Feb 21.

PMID:
23428877
15.

Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system.

Karniel A, Kositsky M, Fleming KM, Chiappalone M, Sanguineti V, Alford ST, Mussa-Ivaldi FA.

J Neural Eng. 2005 Sep;2(3):S250-65. Epub 2005 Aug 31. Review.

PMID:
16135888
16.

Brain-machine interactions for assessing the dynamics of neural systems.

Kositsky M, Chiappalone M, Alford ST, Mussa-Ivaldi FA.

Front Neurorobot. 2009 Mar 27;3:1. doi: 10.3389/neuro.12.001.2009. eCollection 2009.

17.

Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.

Herzfeld DJ, Beardsley SA.

J Neural Eng. 2010 Aug;7(4):046012. doi: 10.1088/1741-2560/7/4/046012. Epub 2010 Jul 19.

PMID:
20644245
18.

Motor cortical decoding performance depends on controlled system order.

Matlack C, Haddock A, Moritz CT, Chizeck HJ.

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2553-6. doi: 10.1109/EMBC.2014.6944143.

PMID:
25570511
19.

Neural feedback for instantaneous spatiotemporal modulation of afferent pathways in bi-directional brain-machine interfaces.

Liu J, Khalil HK, Oweiss KG.

IEEE Trans Neural Syst Rehabil Eng. 2011 Oct;19(5):521-33. doi: 10.1109/TNSRE.2011.2162003. Epub 2011 Aug 18.

PMID:
21859634
20.

Impact of compressed sensing of motor cortical activity on spike train decoding in Brain Machine Interfaces.

Aghagolzadeh M, Shetliffe M, Oweiss KG.

Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5302-5. doi: 10.1109/IEMBS.2008.4650411.

PMID:
19163914
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk