Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis.

Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P.

Plant Cell. 2014 Mar;26(3):1134-50. doi: 10.1105/tpc.114.122903. Epub 2014 Mar 7.

2.

A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2.

Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O.

Plant Physiol. 2013 Apr;161(4):1885-902. doi: 10.1104/pp.112.211383. Epub 2013 Feb 19.

3.

DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone.

Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC.

Curr Biol. 2012 Nov 6;22(21):2032-6. doi: 10.1016/j.cub.2012.08.007. Epub 2012 Sep 6.

4.

Carlactone-independent seedling morphogenesis in Arabidopsis.

Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM.

Plant J. 2013 Oct;76(1):1-9. doi: 10.1111/tpj.12265. Epub 2013 Jul 25.

5.

SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis.

Stanga JP, Smith SM, Briggs WR, Nelson DC.

Plant Physiol. 2013 Sep;163(1):318-30. doi: 10.1104/pp.113.221259. Epub 2013 Jul 26.

6.

Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation.

Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J.

Plant Cell. 2015 Nov;27(11):3128-42. doi: 10.1105/tpc.15.00605. Epub 2015 Nov 6.

7.

D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling.

Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J.

Nature. 2013 Dec 19;504(7480):406-10. doi: 10.1038/nature12878. Epub 2013 Dec 11. Erratum in: Nature. 2016 Apr 21;532(7599):402.

8.

DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching.

Zhao J, Wang T, Wang M, Liu Y, Yuan S, Gao Y, Yin L, Sun W, Peng L, Zhang W, Wan J, Li X.

Plant Cell Physiol. 2014 Jun;55(6):1096-109. doi: 10.1093/pcp/pcu045. Epub 2014 Mar 9.

PMID:
24616269
9.

Striga hermonthica MAX2 restores branching but not the Very Low Fluence Response in the Arabidopsis thaliana max2 mutant.

Liu Q, Zhang Y, Matusova R, Charnikhova T, Amini M, Jamil M, Fernandez-Aparicio M, Huang K, Timko MP, Westwood JH, Ruyter-Spira C, van der Krol S, Bouwmeester HJ.

New Phytol. 2014 Apr;202(2):531-41. doi: 10.1111/nph.12692. Epub 2014 Jan 31.

10.

Molecular mechanism of strigolactone perception by DWARF14.

Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T.

Nat Commun. 2013;4:2613. doi: 10.1038/ncomms3613.

PMID:
24131983
11.

Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching.

Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X.

Dev Cell. 2013 Dec 23;27(6):681-8. doi: 10.1016/j.devcel.2013.11.010.

12.

A Selaginella moellendorffii Ortholog of KARRIKIN INSENSITIVE2 Functions in Arabidopsis Development but Cannot Mediate Responses to Karrikins or Strigolactones.

Waters MT, Scaffidi A, Moulin SL, Sun YK, Flematti GR, Smith SM.

Plant Cell. 2015 Jul;27(7):1925-44. doi: 10.1105/tpc.15.00146. Epub 2015 Jul 14.

13.

The origins and mechanisms of karrikin signalling.

Waters MT, Scaffidi A, Flematti GR, Smith SM.

Curr Opin Plant Biol. 2013 Oct;16(5):667-73. doi: 10.1016/j.pbi.2013.07.005. Epub 2013 Aug 14. Review.

PMID:
23954000
14.

Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis.

Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T.

Biosci Biotechnol Biochem. 2009 Nov;73(11):2460-5. Epub 2009 Nov 7.

15.

Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity.

Koren D, Resnick N, Mayzlish Gati E, Belausov E, Weininger S, Kapulnik Y, Koltai H.

New Phytol. 2013 May;198(3):866-74. doi: 10.1111/nph.12189. Epub 2013 Feb 21.

16.

d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers.

Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J.

Plant Cell Physiol. 2009 Aug;50(8):1416-24. doi: 10.1093/pcp/pcp091. Epub 2009 Jun 19.

PMID:
19542179
17.

Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.

Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM.

Development. 2012 Apr;139(7):1285-95. doi: 10.1242/dev.074567. Epub 2012 Feb 22.

18.

The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants.

Gaiji N, Cardinale F, Prandi C, Bonfante P, Ranghino G.

BMC Res Notes. 2012 Jun 19;5:307. doi: 10.1186/1756-0500-5-307.

19.

KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.

Waters MT, Smith SM.

Mol Plant. 2013 Jan;6(1):63-75. doi: 10.1093/mp/sss127. Epub 2012 Nov 9.

20.

PLANT EVOLUTION. Convergent evolution of strigolactone perception enabled host detection in parasitic plants.

Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B, Westwood JH, Shirasu K, Bond CS, Dyer KA, Nelson DC.

Science. 2015 Jul 31;349(6247):540-3. doi: 10.1126/science.aab1140.

Items per page

Supplemental Content

Write to the Help Desk