Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.
2.

Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation.

Crivoi A, Zhong X, Duan F.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032302. doi: 10.1103/PhysRevE.92.032302. Epub 2015 Sep 4.

PMID:
26465468
3.

Elimination of the coffee-ring effect by promoting particle adsorption and long-range interaction.

Crivoi A, Duan F.

Langmuir. 2013 Oct 1;29(39):12067-74. doi: 10.1021/la402544x. Epub 2013 Sep 20.

PMID:
24015843
4.

Effect of surfactant on the drying patterns of graphite nanofluid droplets.

Crivoi A, Duan F.

J Phys Chem B. 2013 May 16;117(19):5932-8. doi: 10.1021/jp401751z. Epub 2013 May 2.

PMID:
23638760
5.

Fast evaporation of spreading droplets of colloidal suspensions.

Maki KL, Kumar S.

Langmuir. 2011 Sep 20;27(18):11347-63. doi: 10.1021/la202088s. Epub 2011 Aug 26.

PMID:
21834573
6.

Increased evaporation kinetics of sessile droplets by using nanoparticles.

Nguyen TA, Nguyen AV.

Langmuir. 2012 Dec 11;28(49):16725-8. doi: 10.1021/la303293w. Epub 2012 Nov 27.

PMID:
23171287
7.

Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets.

Crivoi A, Duan F.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042303. Epub 2013 Apr 11.

PMID:
23679410
8.

Sagging of evaporating droplets of colloidal suspensions on inclined substrates.

EspĂ­n L, Kumar S.

Langmuir. 2014 Oct 14;30(40):11966-74. doi: 10.1021/la503229z. Epub 2014 Oct 3.

PMID:
25229746
9.

Convective flows in evaporating sessile droplets.

Barmi MR, Meinhart CD.

J Phys Chem B. 2014 Mar 6;118(9):2414-21. doi: 10.1021/jp408241f. Epub 2014 Feb 24.

PMID:
24512008
10.

Sessile nanofluid droplet drying.

Zhong X, Crivoi A, Duan F.

Adv Colloid Interface Sci. 2015 Mar;217:13-30. doi: 10.1016/j.cis.2014.12.003. Epub 2014 Dec 15. Review.

PMID:
25578408
11.

Colloidal Drop Deposition on Porous Substrates: Competition among Particle Motion, Evaporation, and Infiltration.

Pack M, Hu H, Kim DO, Yang X, Sun Y.

Langmuir. 2015 Jul 28;31(29):7953-61. doi: 10.1021/acs.langmuir.5b01846. Epub 2015 Jul 14.

PMID:
26132211
12.

Experimental investigation of evaporation from low-contact-angle sessile droplets.

Dhavaleswarapu HK, Migliaccio CP, Garimella SV, Murthy JY.

Langmuir. 2010 Jan 19;26(2):880-8. doi: 10.1021/la9023458.

PMID:
19775145
13.

Control of the particle distribution in inkjet printing through an evaporation-driven sol-gel transition.

Talbot EL, Yang L, Berson A, Bain CD.

ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9572-83. doi: 10.1021/am501966n. Epub 2014 Jun 12.

PMID:
24889140
14.

Minimal size of coffee ring structure.

Shen X, Ho CM, Wong TS.

J Phys Chem B. 2010 Apr 29;114(16):5269-74. doi: 10.1021/jp912190v. Erratum in: J Phys Chem B. 2010 Jul 8;114(26):8826.

15.
16.

Characteristic size for onset of coffee-ring effect in evaporating lysozyme-water solution droplets.

Gorr HM, Zueger JM, Barnard JA.

J Phys Chem B. 2012 Oct 11;116(40):12213-20. doi: 10.1021/jp307933a. Epub 2012 Oct 2.

PMID:
22998072
17.

Thermocapillary fingering in surfactant-laden water droplets.

De Dier R, Sempels W, Hofkens J, Vermant J.

Langmuir. 2014 Nov 11;30(44):13338-44. doi: 10.1021/la503655j. Epub 2014 Oct 28.

PMID:
25317764
18.

Marangoni effect reverses coffee-ring depositions.

Hu H, Larson RG.

J Phys Chem B. 2006 Apr 13;110(14):7090-4.

PMID:
16599468
19.

Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.

Dugyala VR, Basavaraj MG.

J Phys Chem B. 2015 Mar 5;119(9):3860-7. doi: 10.1021/jp511611v. Epub 2015 Jan 2.

PMID:
25521279
20.

Monte Carlo computer simulations and electron microscopy of colloidal cluster formation via emulsion droplet evaporation.

Schwarz I, Fortini A, Wagner CS, Wittemann A, Schmidt M.

J Chem Phys. 2011 Dec 28;135(24):244501. doi: 10.1063/1.3672106.

PMID:
22225163
Items per page

Supplemental Content

Write to the Help Desk