Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 75

Related Citations for PubMed (Select 24600473)

1.

The analytical landscape of static and temporal dynamics in transcriptome data.

Oh S, Song S, Dasgupta N, Grabowski G.

Front Genet. 2014 Feb 20;5:35. doi: 10.3389/fgene.2014.00035. eCollection 2014. Review.

2.

RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering.

Sîrbu A, Kerr G, Crane M, Ruskin HJ.

PLoS One. 2012;7(12):e50986. doi: 10.1371/journal.pone.0050986. Epub 2012 Dec 10.

3.

Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation.

Äijö T, Butty V, Chen Z, Salo V, Tripathi S, Burge CB, Lahesmaa R, Lähdesmäki H.

Bioinformatics. 2014 Jun 15;30(12):i113-20. doi: 10.1093/bioinformatics/btu274.

4.

RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo[a]pyrene.

van Delft J, Gaj S, Lienhard M, Albrecht MW, Kirpiy A, Brauers K, Claessen S, Lizarraga D, Lehrach H, Herwig R, Kleinjans J.

Toxicol Sci. 2012 Dec;130(2):427-39. doi: 10.1093/toxsci/kfs250. Epub 2012 Aug 13.

5.

Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS.

Park JW, Tokheim C, Shen S, Xing Y.

Methods Mol Biol. 2013;1038:171-9. doi: 10.1007/978-1-62703-514-9_10.

PMID:
23872975
6.

Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.

Zhu M, Dahmen JL, Stacey G, Cheng J.

BMC Bioinformatics. 2013 Sep 22;14:278. doi: 10.1186/1471-2105-14-278.

7.

SplicingCompass: differential splicing detection using RNA-seq data.

Aschoff M, Hotz-Wagenblatt A, Glatting KH, Fischer M, Eils R, König R.

Bioinformatics. 2013 May 1;29(9):1141-8. doi: 10.1093/bioinformatics/btt101. Epub 2013 Feb 28.

8.

RNA-seq and microarray complement each other in transcriptome profiling.

Kogenaru S, Qing Y, Guo Y, Wang N.

BMC Genomics. 2012 Nov 15;13:629. doi: 10.1186/1471-2164-13-629.

9.

Phylogenomic distance method for analyzing transcriptome evolution based on RNA-seq data.

Gu X, Zou Y, Huang W, Shen L, Arendsee Z, Su Z.

Genome Biol Evol. 2013;5(9):1746-53. doi: 10.1093/gbe/evt121.

10.

RNA-Seq Atlas--a reference database for gene expression profiling in normal tissue by next-generation sequencing.

Krupp M, Marquardt JU, Sahin U, Galle PR, Castle J, Teufel A.

Bioinformatics. 2012 Apr 15;28(8):1184-5. doi: 10.1093/bioinformatics/bts084. Epub 2012 Feb 17.

11.

Comparative studies of differential gene calling using RNA-Seq data.

Zheng X, Moriyama EN.

BMC Bioinformatics. 2013;14 Suppl 13:S7. doi: 10.1186/1471-2105-14-S13-S7. Epub 2013 Oct 1.

12.

Genome-wide Profiling of RNA splicing in prostate tumor from RNA-seq data using virtual microarrays.

Srinivasan S, Patil AH, Verma M, Bingham JL, Srivatsan R.

J Clin Bioinforma. 2012 Nov 26;2(1):21. doi: 10.1186/2043-9113-2-21.

13.

Time series expression analyses using RNA-seq: a statistical approach.

Oh S, Song S, Grabowski G, Zhao H, Noonan JP.

Biomed Res Int. 2013;2013:203681. doi: 10.1155/2013/203681. Epub 2013 Mar 24.

14.

Characterizing the impact of smoking and lung cancer on the airway transcriptome using RNA-Seq.

Beane J, Vick J, Schembri F, Anderlind C, Gower A, Campbell J, Luo L, Zhang XH, Xiao J, Alekseyev YO, Wang S, Levy S, Massion PP, Lenburg M, Spira A.

Cancer Prev Res (Phila). 2011 Jun;4(6):803-17. doi: 10.1158/1940-6207.CAPR-11-0212.

15.

Transcriptome analysis reveals differential splicing events in IPF lung tissue.

Nance T, Smith KS, Anaya V, Richardson R, Ho L, Pala M, Mostafavi S, Battle A, Feghali-Bostwick C, Rosen G, Montgomery SB.

PLoS One. 2014 May 7;9(5):e97550. doi: 10.1371/journal.pone.0097550. eCollection 2014. Erratum in: PLoS One. 2014;9(5):e97392.

16.

Transcriptome analysis reveals differential splicing events in IPF lung tissue.

Nance T, Smith KS, Anaya V, Richardson R, Ho L, Pala M, Mostafavi S, Battle A, Feghali-Bostwick C, Rosen G, Montgomery SB.

PLoS One. 2014 Mar 19;9(3):e92111. doi: 10.1371/journal.pone.0092111. eCollection 2014.

17.

Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.

Brooks MJ, Rajasimha HK, Roger JE, Swaroop A.

Mol Vis. 2011;17:3034-54. Epub 2011 Nov 23.

18.

Overview of available methods for diverse RNA-Seq data analyses.

Chen G, Wang C, Shi T.

Sci China Life Sci. 2011 Dec;54(12):1121-8. doi: 10.1007/s11427-011-4255-x. Epub 2012 Jan 7. Review.

PMID:
22227904
19.

Towards the integration, annotation and association of historical microarray experiments with RNA-seq.

Chavan SS, Bauer MA, Peterson EA, Heuck CJ, Johann DJ Jr.

BMC Bioinformatics. 2013;14 Suppl 14:S4. doi: 10.1186/1471-2105-14-S14-S4. Epub 2013 Oct 9.

20.

Identifying differentially spliced genes from two groups of RNA-seq samples.

Wang W, Qin Z, Feng Z, Wang X, Zhang X.

Gene. 2013 Apr 10;518(1):164-70. doi: 10.1016/j.gene.2012.11.045. Epub 2012 Dec 8.

PMID:
23228854
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk