Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 116

Similar articles for PubMed (Select 24599390)

1.

Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves.

Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB.

Plant Cell Physiol. 2014 Jun;55(6):1080-95. doi: 10.1093/pcp/pcu044. Epub 2014 Mar 4.

PMID:
24599390
2.

Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis.

Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, Schaller GE, Loraine A, Kieber JJ.

Plant Physiol. 2013 May;162(1):272-94. doi: 10.1104/pp.113.217026. Epub 2013 Mar 22.

3.

Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants.

García MJ, Romera FJ, Stacey MG, Stacey G, Villar E, Alcántara E, Pérez-Vicente R.

Planta. 2013 Jan;237(1):65-75. doi: 10.1007/s00425-012-1757-0. Epub 2012 Sep 15.

PMID:
22983673
4.

Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots.

Vidal EA, Moyano TC, Krouk G, Katari MS, Tanurdzic M, McCombie WR, Coruzzi GM, Gutiérrez RA.

BMC Genomics. 2013 Oct 11;14:701. doi: 10.1186/1471-2164-14-701.

5.

IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress.

Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH.

Plant Cell. 2012 Sep;24(9):3590-602. doi: 10.1105/tpc.112.097006. Epub 2012 Sep 7.

6.

Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency.

Koen E, Szymańska K, Klinguer A, Dobrowolska G, Besson-Bard A, Wendehenne D.

Plant Signal Behav. 2012 Oct 1;7(10):1246-50. doi: 10.4161/psb.21548. Epub 2012 Aug 20.

7.

Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor.

Terrile MC, París R, Calderón-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA.

Plant J. 2012 May;70(3):492-500. doi: 10.1111/j.1365-313X.2011.04885.x. Epub 2012 Jan 16.

8.

Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress.

Li CW, Lee SH, Chieh PS, Lin CS, Wang YC, Chan MT.

Plant Cell Physiol. 2012 Oct;53(10):1707-19. doi: 10.1093/pcp/pcs114. Epub 2012 Aug 9.

PMID:
22885616
10.

ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization.

Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C.

J Exp Bot. 2012 Oct;63(17):6125-38. doi: 10.1093/jxb/ers261. Epub 2012 Oct 1.

11.

S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana.

Espunya MC, De Michele R, Gómez-Cadenas A, Martínez MC.

J Exp Bot. 2012 May;63(8):3219-27. doi: 10.1093/jxb/ers043. Epub 2012 Feb 27.

12.

Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana.

Hebelstrup KH, van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Møller IM, Mur LA.

J Exp Bot. 2012 Sep;63(15):5581-91. doi: 10.1093/jxb/ers210. Epub 2012 Aug 21.

13.

Nitric oxide accumulation in Arabidopsis is independent of NOA1 in the presence of sucrose.

Van Ree K, Gehl B, Chehab EW, Tsai YC, Braam J.

Plant J. 2011 Oct;68(2):225-33. doi: 10.1111/j.1365-313X.2011.04680.x. Epub 2011 Jul 26.

PMID:
21689173
14.

SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response.

Qin F, Kodaira KS, Maruyama K, Mizoi J, Tran LS, Fujita Y, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K.

Plant Physiol. 2011 Dec;157(4):1900-13. doi: 10.1104/pp.111.187302. Epub 2011 Oct 19.

15.

Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions.

Ferrarini A, De Stefano M, Baudouin E, Pucciariello C, Polverari A, Puppo A, Delledonne M.

Mol Plant Microbe Interact. 2008 Jun;21(6):781-90. doi: 10.1094/MPMI-21-6-0781.

16.

Mechanism of gene expression of Arabidopsis glutathione S-transferase, AtGST1, and AtGST11 in response to aluminum stress.

Ezaki B, Suzuki M, Motoda H, Kawamura M, Nakashima S, Matsumoto H.

Plant Physiol. 2004 Apr;134(4):1672-82. Epub 2004 Mar 26.

17.

Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana.

Gao Y, Badejo AA, Sawa Y, Ishikawa T.

Plant Cell Physiol. 2012 Mar;53(3):592-601. doi: 10.1093/pcp/pcs014. Epub 2012 Feb 9.

PMID:
22323769
18.

Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/MS.

Airaki M, Sánchez-Moreno L, Leterrier M, Barroso JB, Palma JM, Corpas FJ.

Plant Cell Physiol. 2011 Nov;52(11):2006-15. doi: 10.1093/pcp/pcr133. Epub 2011 Sep 30.

PMID:
21965607
19.

Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide.

Lindermayr C, Sell S, Müller B, Leister D, Durner J.

Plant Cell. 2010 Aug;22(8):2894-907. doi: 10.1105/tpc.109.066464. Epub 2010 Aug 17.

20.

Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots.

Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K.

Plant J. 2002 Feb;29(4):465-73.

PMID:
11846879
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk