Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 100

1.

Dropwise condensation of low surface tension fluids on omniphobic surfaces.

Rykaczewski K, Paxson AT, Staymates M, Walker ML, Sun X, Anand S, Srinivasan S, McKinley GH, Chinn J, Scott JH, Varanasi KK.

Sci Rep. 2014 Mar 5;4:4158. doi: 10.1038/srep04158.

PMID:
24595171
[PubMed - in process]
Free PMC Article
2.

Enhanced condensation on lubricant-impregnated nanotextured surfaces.

Anand S, Paxson AT, Dhiman R, Smith JD, Varanasi KK.

ACS Nano. 2012 Nov 27;6(11):10122-9. doi: 10.1021/nn303867y. Epub 2012 Oct 10.

PMID:
23030619
[PubMed - indexed for MEDLINE]
3.

Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer.

Xiao R, Miljkovic N, Enright R, Wang EN.

Sci Rep. 2013;3:1988. doi: 10.1038/srep01988.

PMID:
23759735
[PubMed]
Free PMC Article
4.

Robust omniphobic surfaces.

Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE.

Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18200-5. doi: 10.1073/pnas.0804872105. Epub 2008 Nov 10.

PMID:
19001270
[PubMed]
Free PMC Article
5.

Flow condensation on copper-based nanotextured superhydrophobic surfaces.

Torresin D, Tiwari MK, Del Col D, Poulikakos D.

Langmuir. 2013 Jan 15;29(2):840-8. doi: 10.1021/la304389s. Epub 2013 Jan 2.

PMID:
23249322
[PubMed]
6.

Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.

Miljkovic N, Enright R, Wang EN.

ACS Nano. 2012 Feb 28;6(2):1776-85. doi: 10.1021/nn205052a. Epub 2012 Feb 13.

PMID:
22293016
[PubMed]
7.

Condensation on surface energy gradient shifts drop size distribution toward small drops.

Macner AM, Daniel S, Steen PH.

Langmuir. 2014 Feb 25;30(7):1788-98. doi: 10.1021/la404057g. Epub 2014 Feb 13.

PMID:
24490757
[PubMed - in process]
8.

Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

Miljkovic N, Preston DJ, Enright R, Wang EN.

ACS Nano. 2013 Dec 23;7(12):11043-54. doi: 10.1021/nn404707j. Epub 2013 Dec 4.

PMID:
24261667
[PubMed]
9.

Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.

Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, Wang EN.

Nano Lett. 2013 Jan 9;13(1):179-87. doi: 10.1021/nl303835d. Epub 2012 Dec 17.

PMID:
23190055
[PubMed]
10.

Ice adhesion on lubricant-impregnated textured surfaces.

Subramanyam SB, Rykaczewski K, Varanasi KK.

Langmuir. 2013 Nov 5;29(44):13414-8. doi: 10.1021/la402456c. Epub 2013 Oct 21.

PMID:
24070257
[PubMed]
11.

Mechanism of frost formation on lubricant-impregnated surfaces.

Rykaczewski K, Anand S, Subramanyam SB, Varanasi KK.

Langmuir. 2013 Apr 30;29(17):5230-8. doi: 10.1021/la400801s. Epub 2013 Apr 22.

PMID:
23565857
[PubMed]
12.

Slip flow of diverse liquids on robust superomniphobic surfaces.

Wu Y, Cai M, Li Z, Song X, Wang H, Pei X, Zhou F.

J Colloid Interface Sci. 2014 Jan 15;414:9-13. doi: 10.1016/j.jcis.2013.09.041. Epub 2013 Oct 5.

PMID:
24231078
[PubMed]
13.

Superoleophobic behavior induced by nanofeatures on oleophilic surfaces.

Ramos SM, Benyagoub A, Canut B, Jamois C.

Langmuir. 2010 Apr 6;26(7):5141-6. doi: 10.1021/la9036138.

PMID:
20000761
[PubMed]
14.

On the characteristics of ion implanted metallic surfaces inducing dropwise condensation of steam.

Rausch MH, Leipertz A, Fröba AP.

Langmuir. 2010 Apr 20;26(8):5971-5. doi: 10.1021/la904293f.

PMID:
20345184
[PubMed]
15.

Fabrics coated with lubricated nanostructures display robust omniphobicity.

Shillingford C, MacCallum N, Wong TS, Kim P, Aizenberg J.

Nanotechnology. 2014 Jan 10;25(1):014019. doi: 10.1088/0957-4484/25/1/014019. Epub 2013 Dec 11.

PMID:
24334333
[PubMed]
16.

Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation.

Anderson DM, Gupta MK, Voevodin AA, Hunter CN, Putnam SA, Tsukruk VV, Fedorov AG.

ACS Nano. 2012 Apr 24;6(4):3262-8. doi: 10.1021/nn300183d. Epub 2012 Apr 11.

PMID:
22456273
[PubMed - indexed for MEDLINE]
17.

Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.

Feng J, Qin Z, Yao S.

Langmuir. 2012 Apr 10;28(14):6067-75. doi: 10.1021/la300609f. Epub 2012 Mar 29.

PMID:
22424422
[PubMed]
18.

Self-propelled dropwise condensate on superhydrophobic surfaces.

Boreyko JB, Chen CH.

Phys Rev Lett. 2009 Oct 30;103(18):184501. Epub 2009 Oct 26.

PMID:
19905808
[PubMed]
19.

Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system.

Leach RN, Stevens F, Langford SC, Dickinson JT.

Langmuir. 2006 Oct 10;22(21):8864-72.

PMID:
17014129
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

Virtual walls based on oil-repellent surfaces for low-surface-tension liquids.

Almeida R, Kwon JW.

Langmuir. 2013 Jan 29;29(4):994-8. doi: 10.1021/la3040038. Epub 2013 Jan 17.

PMID:
23311883
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk