Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 116

Similar articles for PubMed (Select 24584282)

1.

Mechanism of antibacterial activity of copper nanoparticles.

Chatterjee AK, Chakraborty R, Basu T.

Nanotechnology. 2014 Apr 4;25(13):135101. doi: 10.1088/0957-4484/25/13/135101. Epub 2014 Feb 28.

PMID:
24584282
2.

Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.

Díaz-Visurraga J, Daza C, Pozo C, Becerra A, von Plessing C, García A.

Int J Nanomedicine. 2012;7:3597-612. doi: 10.2147/IJN.S32648. Epub 2012 Jul 11.

3.

Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA.

Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-Samara C.

J Inorg Biochem. 2014 Apr;133:24-32. doi: 10.1016/j.jinorgbio.2013.12.009. Epub 2014 Jan 3.

PMID:
24441110
4.

Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications.

Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A.

ACS Appl Mater Interfaces. 2012 Mar;4(3):1313-23. doi: 10.1021/am201586w. Epub 2012 Feb 16.

PMID:
22301575
5.

A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage.

Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P.

Colloids Surf B Biointerfaces. 2012 Aug 1;96:50-5. doi: 10.1016/j.colsurfb.2012.03.021. Epub 2012 Apr 5.

PMID:
22521682
6.

Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper-silver bimetal nanoparticles for antibacterial applications.

Khare P, Sharma A, Verma N.

J Colloid Interface Sci. 2014 Mar 15;418:216-24. doi: 10.1016/j.jcis.2013.12.026. Epub 2013 Dec 19.

PMID:
24461838
7.

Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application.

Thekkae Padil VV, Černík M.

Int J Nanomedicine. 2013;8:889-98. doi: 10.2147/IJN.S40599. Epub 2013 Feb 28.

8.

Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications.

Rastogi L, Arunachalam J.

Colloids Surf B Biointerfaces. 2013 Aug 1;108:134-41. doi: 10.1016/j.colsurfb.2013.02.031. Epub 2013 Mar 7.

PMID:
23531744
9.

Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV.

Colloids Surf B Biointerfaces. 2012 Jun 1;94:143-50. doi: 10.1016/j.colsurfb.2012.01.046. Epub 2012 Feb 7.

PMID:
22348987
10.

A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli.

Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T.

Nanotechnology. 2012 Feb 1;23(8):085103. [Epub ahead of print]

PMID:
22293320
11.

Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli.

Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2013;48(8):871-8. doi: 10.1080/10934529.2013.761489.

PMID:
23485236
12.
13.

Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution.

Martinolich AJ, Park G, Nakamoto MY, Gate RE, Wheeler KE.

Environ Sci Technol. 2012 Jun 5;46(11):6355-62. doi: 10.1021/es300901h. Epub 2012 May 18.

PMID:
22563882
14.

Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress.

Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E.

Small. 2012 Nov 5;8(21):3326-37. doi: 10.1002/smll.201200772. Epub 2012 Aug 13.

PMID:
22888058
15.

Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array.

Li F, Lei C, Shen Q, Li L, Wang M, Guo M, Huang Y, Nie Z, Yao S.

Nanoscale. 2013 Jan 21;5(2):653-62. doi: 10.1039/c2nr32156d. Epub 2012 Dec 5.

PMID:
23223666
17.

The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action.

Zhang Y, Gao X, Zhi L, Liu X, Jiang W, Sun Y, Yang J.

J Inorg Biochem. 2014 Jan;130:74-83. doi: 10.1016/j.jinorgbio.2013.10.004. Epub 2013 Oct 11.

PMID:
24176922
18.

Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: mechanism, structure-activity relationship, and biological implications.

Fan GJ, Jin XL, Qian YP, Wang Q, Yang RT, Dai F, Tang JJ, Shang YJ, Cheng LX, Yang J, Zhou B.

Chemistry. 2009 Nov 23;15(46):12889-99. doi: 10.1002/chem.200901627.

PMID:
19847825
19.

Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.

Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, De Battice L, Svedhem S, Wallinder IO.

Toxicology. 2013 Nov 8;313(1):59-69. doi: 10.1016/j.tox.2013.07.012. Epub 2013 Jul 26.

20.

Copper nanoparticles synthesized by polyol process used to control hematophagous parasites.

Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu S.

Parasitol Res. 2011 Nov;109(5):1403-15. doi: 10.1007/s00436-011-2387-3. Epub 2011 Apr 28.

PMID:
21526405
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk