Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.

ngsCAT: a tool to assess the efficiency of targeted enrichment sequencing.

López-Domingo FJ, Florido JP, Rueda A, Dopazo J, Santoyo-Lopez J.

Bioinformatics. 2014 Jun 15;30(12):1767-8. doi: 10.1093/bioinformatics/btu108. Epub 2014 Feb 26.

PMID:
24578402
2.

Assessing the enrichment performance in targeted resequencing experiments.

Frommolt P, Abdallah AT, Altmüller J, Motameny S, Thiele H, Becker C, Stemshorn K, Fischer M, Freilinger T, Nürnberg P.

Hum Mutat. 2012 Apr;33(4):635-41. doi: 10.1002/humu.22036. Epub 2012 Feb 28.

PMID:
22290614
3.

Wessim: a whole-exome sequencing simulator based on in silico exome capture.

Kim S, Jeong K, Bafna V.

Bioinformatics. 2013 Apr 15;29(8):1076-7. doi: 10.1093/bioinformatics/btt074. Epub 2013 Feb 14.

PMID:
23413434
4.

MitoSeek: extracting mitochondria information and performing high-throughput mitochondria sequencing analysis.

Guo Y, Li J, Li CI, Shyr Y, Samuels DC.

Bioinformatics. 2013 May 1;29(9):1210-1. doi: 10.1093/bioinformatics/btt118. Epub 2013 Mar 6.

PMID:
23471301
5.

Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.

Zhang G, Wang J, Yang J, Li W, Deng Y, Li J, Huang J, Hu S, Zhang B.

BMC Genomics. 2015 Aug 5;16:581. doi: 10.1186/s12864-015-1796-6.

PMID:
26242175
6.

Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities.

Lin X, Tang W, Ahmad S, Lu J, Colby CC, Zhu J, Yu Q.

Hear Res. 2012 Jun;288(1-2):67-76. doi: 10.1016/j.heares.2012.01.004. Epub 2012 Jan 14. Review.

PMID:
22269275
7.

Improving mapping and SNP-calling performance in multiplexed targeted next-generation sequencing.

Elsharawy A, Forster M, Schracke N, Keller A, Thomsen I, Petersen BS, Stade B, Stähler P, Schreiber S, Rosenstiel P, Franke A.

BMC Genomics. 2012 Aug 22;13:417. doi: 10.1186/1471-2164-13-417.

PMID:
22913592
8.

Re-alignment of the unmapped reads with base quality score.

Peng X, Wang J, Zhang Z, Xiao Q, Li M, Pan Y.

BMC Bioinformatics. 2015;16 Suppl 5:S8. doi: 10.1186/1471-2105-16-S5-S8. Epub 2015 Mar 18.

PMID:
25860434
9.

Development and performance of a targeted whole exome sequencing enrichment kit for the dog (Canis Familiaris Build 3.1).

Broeckx BJ, Coopman F, Verhoeven GE, Bavegems V, De Keulenaer S, De Meester E, Van Niewerburgh F, Deforce D.

Sci Rep. 2014 Jul 7;4:5597. doi: 10.1038/srep05597.

PMID:
24998260
10.

An integrative variant analysis suite for whole exome next-generation sequencing data.

Challis D, Yu J, Evani US, Jackson AR, Paithankar S, Coarfa C, Milosavljevic A, Gibbs RA, Yu F.

BMC Bioinformatics. 2012 Jan 12;13:8. doi: 10.1186/1471-2105-13-8.

PMID:
22239737
11.

pIRS: Profile-based Illumina pair-end reads simulator.

Hu X, Yuan J, Shi Y, Lu J, Liu B, Li Z, Chen Y, Mu D, Zhang H, Li N, Yue Z, Bai F, Li H, Fan W.

Bioinformatics. 2012 Jun 1;28(11):1533-5. doi: 10.1093/bioinformatics/bts187. Epub 2012 Apr 15.

PMID:
22508794
12.

Exome versus transcriptome sequencing in identifying coding region variants.

Ku CS, Wu M, Cooper DN, Naidoo N, Pawitan Y, Pang B, Iacopetta B, Soong R.

Expert Rev Mol Diagn. 2012 Apr;12(3):241-51. doi: 10.1586/erm.12.10. Review.

PMID:
22468815
13.

Exome capture from saliva produces high quality genomic and metagenomic data.

Kidd JM, Sharpton TJ, Bobo D, Norman PJ, Martin AR, Carpenter ML, Sikora M, Gignoux CR, Nemat-Gorgani N, Adams A, Guadalupe M, Guo X, Feng Q, Li Y, Liu X, Parham P, Hoal EG, Feldman MW, Pollard KS, Wall JD, Bustamante CD, Henn BM.

BMC Genomics. 2014 Apr 4;15:262. doi: 10.1186/1471-2164-15-262.

PMID:
24708091
14.

Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform.

Summerer D, Schracke N, Wu H, Cheng Y, Bau S, Stähler CF, Stähler PF, Beier M.

Genomics. 2010 Apr;95(4):241-6. doi: 10.1016/j.ygeno.2010.01.006. Epub 2010 Feb 6.

PMID:
20138981
15.

Pre-capture multiplexing improves efficiency and cost-effectiveness of targeted genomic enrichment.

Shearer AE, Hildebrand MS, Ravi H, Joshi S, Guiffre AC, Novak B, Happe S, LeProust EM, Smith RJ.

BMC Genomics. 2012 Nov 14;13:618. doi: 10.1186/1471-2164-13-618.

PMID:
23148716
16.

Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies.

Kong Y.

Genomics. 2011 Aug;98(2):152-3. doi: 10.1016/j.ygeno.2011.05.009. Epub 2011 May 30.

PMID:
21651976
17.

Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics.

Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG, van den Berg MP, van Spaendonck-Zwarts KY, van Tintelen JP, Sijmons RH, Jongbloed JD, Sinke RJ.

Hum Mutat. 2013 Jul;34(7):1035-42. doi: 10.1002/humu.22332. Epub 2013 Apr 29.

PMID:
23568810
18.

VING: a software for visualization of deep sequencing signals.

Descrimes M, Ben Zouari Y, Wery M, Legendre R, Gautheret D, Morillon A.

BMC Res Notes. 2015 Sep 7;8:419. doi: 10.1186/s13104-015-1404-5.

PMID:
26346985
19.

Technological advances in DNA sequence enrichment and sequencing for germline genetic diagnosis.

Ku CS, Wu M, Cooper DN, Naidoo N, Pawitan Y, Pang B, Iacopetta B, Soong R.

Expert Rev Mol Diagn. 2012 Mar;12(2):159-73. doi: 10.1586/erm.11.95. Review.

PMID:
22369376
20.

Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics.

Hancock-Hanser BL, Frey A, Leslie MS, Dutton PH, Archer FI, Morin PA.

Mol Ecol Resour. 2013 Mar;13(2):254-68. doi: 10.1111/1755-0998.12059. Epub 2013 Jan 25.

PMID:
23351075
Items per page

Supplemental Content

Write to the Help Desk