Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

Related Citations for PubMed (Select 24576651)

1.

Longitudinal postoperative lasik epithelial thickness profile changes in correlation with degree of myopia correction.

Kanellopoulos AJ, Asimellis G.

J Refract Surg. 2014 Mar;30(3):166-71. doi: 10.3928/1081597X-20140219-01.

PMID:
24576651
2.
3.

Spectral-domain optical coherence tomography epithelial and flap thickness mapping in femtosecond laser-assisted in situ keratomileusis.

Maia Rocha K, Krueger RR.

Am J Ophthalmol. 2014 Aug;158(2):293-301.e1. doi: 10.1016/j.ajo.2014.04.012. Epub 2014 Apr 30.

PMID:
24792107
4.

Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser.

Cummings AB, Cummings BK, Kelly GE.

J Cataract Refract Surg. 2013 Mar;39(3):378-85. doi: 10.1016/j.jcrs.2012.10.041. Epub 2013 Jan 23.

PMID:
23352500
5.

Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound.

Reinstein DZ, Archer TJ, Gobbe M.

J Refract Surg. 2012 Mar;28(3):195-201. doi: 10.3928/1081597X-20120127-02. Epub 2012 Feb 1.

PMID:
22301100
6.

Prospective contralateral eye study to compare 80- and 120-μm flap LASIK using the VisuMax femtosecond laser.

Lim DH, Keum JE, Ju WK, Lee JH, Chung TY, Chung ES.

J Refract Surg. 2013 Jul;29(7):462-8. doi: 10.3928/1081597X-20130617-04.

PMID:
23820228
8.

Corneal epithelial remodeling following cataract surgery: three-dimensional investigation with anterior-segment optical coherence tomography.

Kanellopoulos AJ, Asimellis G.

J Refract Surg. 2014 May;30(5):348-53. doi: 10.3928/1081597X-20140416-04.

PMID:
24893360
9.

Factors influencing corneal flap thickness in laser in situ keratomileusis with a femtosecond laser.

Kim CY, Song JH, Na KS, Chung SH, Joo CK.

Korean J Ophthalmol. 2011 Feb;25(1):8-14. doi: 10.3341/kjo.2011.25.1.8. Epub 2011 Jan 17.

10.

Safety, efficacy, and predictability of laser in situ keratomileusis to correct myopia or myopic astigmatism with a 750 Hz scanning-spot laser system.

Tomita M, Watabe M, Yukawa S, Nakamura N, Nakamura T, Magnago T.

J Cataract Refract Surg. 2014 Feb;40(2):251-8. doi: 10.1016/j.jcrs.2013.07.043. Epub 2013 Dec 15.

PMID:
24345530
11.

Thin-flap laser in situ keratomileusis with femtosecond-laser technology.

Kymionis GD, Kontadakis GA, Grentzelos MA, Panagopoulou SI, Stojanovic N, Kankariya VP, Henderson BA, Pallikaris IG.

J Cataract Refract Surg. 2013 Sep;39(9):1366-71. doi: 10.1016/j.jcrs.2013.03.024. Epub 2013 Jun 29.

PMID:
23820304
12.

Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps.

Murakami Y, Manche EE.

J Cataract Refract Surg. 2011 Oct;37(10):1879-83. doi: 10.1016/j.jcrs.2011.05.024. Epub 2011 Aug 15.

PMID:
21840682
13.

Long-term visual and refractive outcomes following surface ablation techniques in a large population for myopia correction.

Kulkarni SV, AlMahmoud T, Priest D, Taylor SE, Mintsioulis G, Jackson WB.

Invest Ophthalmol Vis Sci. 2013 Jan 21;54(1):609-19. doi: 10.1167/iovs.12-10387.

14.

Changes in custom biomechanical variables after femtosecond laser in situ keratomileusis and photorefractive keratectomy for myopia.

Santhiago MR, Wilson SE, Hallahan KM, Smadja D, Lin M, Ambrosio R Jr, Singh V, Roy AS, Dupps WJ Jr.

J Cataract Refract Surg. 2014 Jun;40(6):918-28. doi: 10.1016/j.jcrs.2013.11.030. Epub 2014 Apr 13.

PMID:
24726160
15.

A contralateral, randomized comparison of optimized prolate ablation and conventional LASIK for myopia with the NIDEK excimer laser platform.

El Danasoury AM, Holladay J, Waring GO 3rd, Pieger S, Bains HS.

J Refract Surg. 2012 Jul;28(7):453-61. doi: 10.3928/1081597X-20120621-01.

PMID:
22767164
16.

Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound.

Reinstein DZ, Srivannaboon S, Gobbe M, Archer TJ, Silverman RH, Sutton H, Coleman DJ.

J Refract Surg. 2009 May;25(5):444-50.

17.
18.

Corneal higher order aberrations after LASIK for high myopia with a fast repetition rate excimer laser, optimized ablation profile, and femtosecond laser-assisted flap.

Vega-Estrada A, Alió JL, Arba Mosquera S, Moreno LJ.

J Refract Surg. 2012 Oct;28(10):689-96. doi: 10.3928/1081597X-20120921-03.

PMID:
23061998
19.

In vivo confocal laser microscopy of morphologic changes after simultaneous LASIK and accelerated collagen crosslinking for myopia: one-year results.

Tomita M, Yoshida Y, Yamamoto Y, Mita M, Waring G 4th.

J Cataract Refract Surg. 2014 Jun;40(6):981-90. doi: 10.1016/j.jcrs.2013.10.044.

PMID:
24857441
20.

Thresholds for interface haze formation after thin-flap femtosecond laser in situ keratomileusis for myopia.

Rocha KM, Kagan R, Smith SD, Krueger RR.

Am J Ophthalmol. 2009 Jun;147(6):966-72, 972.e1. doi: 10.1016/j.ajo.2009.01.010. Epub 2009 Mar 27.

PMID:
19327748
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk