Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 135

1.

Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.

Robinson R, Franceschini S, Fedkenheuer M, Rodriguez PJ, Ellerbrock J, Romero E, Echandi MP, Martin Del Campo JS, Sobrado P.

Biochim Biophys Acta. 2014 Apr;1844(4):778-84. doi: 10.1016/j.bbapap.2014.02.005. Epub 2014 Feb 15.

PMID:
24534646
[PubMed - indexed for MEDLINE]
2.

Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.

Shirey C, Badieyan S, Sobrado P.

J Biol Chem. 2013 Nov 8;288(45):32440-8. doi: 10.1074/jbc.M113.487181. Epub 2013 Sep 26.

PMID:
24072704
[PubMed - indexed for MEDLINE]
3.

Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.

Chocklett SW, Sobrado P.

Biochemistry. 2010 Aug 10;49(31):6777-83. doi: 10.1021/bi100291n.

PMID:
20614882
[PubMed - indexed for MEDLINE]
4.

Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase.

Romero E, Fedkenheuer M, Chocklett SW, Qi J, Oppenheimer M, Sobrado P.

Biochim Biophys Acta. 2012 Jun;1824(6):850-7. doi: 10.1016/j.bbapap.2012.03.004. Epub 2012 Mar 27.

PMID:
22465572
[PubMed - indexed for MEDLINE]
Free Article
5.

C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.

Robinson R, Badieyan S, Sobrado P.

Biochemistry. 2013 Dec 23;52(51):9089-91. doi: 10.1021/bi4014903. Epub 2013 Dec 12.

PMID:
24321106
[PubMed - indexed for MEDLINE]
6.

Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.

Franceschini S, Fedkenheuer M, Vogelaar NJ, Robinson HH, Sobrado P, Mattevi A.

Biochemistry. 2012 Sep 11;51(36):7043-5. Epub 2012 Aug 30.

PMID:
22928747
[PubMed - indexed for MEDLINE]
7.

Monitoring the reductive and oxidative half-reactions of a flavin-dependent monooxygenase using stopped-flow spectrophotometry.

Romero E, Robinson R, Sobrado P.

J Vis Exp. 2012 Mar 18;(61). pii: 3803. doi: 10.3791/3803.

PMID:
22453826
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase.

Mayfield JA, Frederick RE, Streit BR, Wencewicz TA, Ballou DP, DuBois JL.

J Biol Chem. 2010 Oct 1;285(40):30375-88. doi: 10.1074/jbc.M110.157578. Epub 2010 Jul 22.

PMID:
20650894
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction.

Meneely KM, Barr EW, Bollinger JM Jr, Lamb AL.

Biochemistry. 2009 May 26;48(20):4371-6. doi: 10.1021/bi900442z.

PMID:
19368334
[PubMed - indexed for MEDLINE]
Free PMC Article
11.
12.
13.

Mechanistic studies on the flavin-dependent N⁶-lysine monooxygenase MbsG reveal an unusual control for catalysis.

Robinson RM, Rodriguez PJ, Sobrado P.

Arch Biochem Biophys. 2014 May 15;550-551:58-66. doi: 10.1016/j.abb.2014.04.006. Epub 2014 Apr 24.

PMID:
24769337
[PubMed - indexed for MEDLINE]
14.

Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.

Murataliev MB, Feyereisen R.

Biochemistry. 2000 Oct 17;39(41):12699-707.

PMID:
11027150
[PubMed - indexed for MEDLINE]
15.

Joint functions of protein residues and NADP(H) in oxygen activation by flavin-containing monooxygenase.

Orru R, Pazmiño DE, Fraaije MW, Mattevi A.

J Biol Chem. 2010 Nov 5;285(45):35021-8. doi: 10.1074/jbc.M110.161372. Epub 2010 Aug 31.

PMID:
20807767
[PubMed - indexed for MEDLINE]
Free PMC Article
16.

Kinetics of proton-linked flavin conformational changes in p-hydroxybenzoate hydroxylase.

Frederick KK, Palfey BA.

Biochemistry. 2005 Oct 11;44(40):13304-14.

PMID:
16201756
[PubMed - indexed for MEDLINE]
17.

Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.

Murataliev MB, Klein M, Fulco A, Feyereisen R.

Biochemistry. 1997 Jul 8;36(27):8401-12.

PMID:
9204888
[PubMed - indexed for MEDLINE]
18.

Tryptophan-47 in the active site of Methylophaga sp. strain SK1 flavin-monooxygenase is important for hydride transfer.

Han A, Robinson RM, Badieyan S, Ellerbrock J, Sobrado P.

Arch Biochem Biophys. 2013 Apr 1;532(1):46-53. doi: 10.1016/j.abb.2013.01.004. Epub 2013 Jan 25.

PMID:
23357278
[PubMed - indexed for MEDLINE]
19.

Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.

Marohnic CC, Bewley MC, Barber MJ.

Biochemistry. 2003 Sep 30;42(38):11170-82.

PMID:
14503867
[PubMed - indexed for MEDLINE]
20.

Evidence for flavin movement in the function of p-hydroxybenzoate hydroxylase from studies of the mutant Arg220Lys.

Moran GR, Entsch B, Palfey BA, Ballou DP.

Biochemistry. 1996 Jul 16;35(28):9278-85.

PMID:
8703933
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk