Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 157

1.

Frontostriatal activity and connectivity increase during proactive inhibition across adolescence and early adulthood.

Vink M, Zandbelt BB, Gladwin T, Hillegers M, Hoogendam JM, van den Wildenberg WP, Du Plessis S, Kahn RS.

Hum Brain Mapp. 2014 Sep;35(9):4415-27. doi: 10.1002/hbm.22483. Epub 2014 Feb 15.

PMID:
24532023
2.

Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition.

Zandbelt BB, Bloemendaal M, Hoogendam JM, Kahn RS, Vink M.

J Cogn Neurosci. 2013 Feb;25(2):157-74. doi: 10.1162/jocn_a_00309. Epub 2012 Oct 15.

PMID:
23066733
3.

Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control.

Rubia K, Smith AB, Woolley J, Nosarti C, Heyman I, Taylor E, Brammer M.

Hum Brain Mapp. 2006 Dec;27(12):973-93.

PMID:
16683265
4.

Preparing for selective inhibition within frontostriatal loops.

Smittenaar P, Guitart-Masip M, Lutti A, Dolan RJ.

J Neurosci. 2013 Nov 13;33(46):18087-97. doi: 10.1523/JNEUROSCI.2167-13.2013.

5.

Expectations and violations: delineating the neural network of proactive inhibitory control.

Zandbelt BB, Bloemendaal M, Neggers SF, Kahn RS, Vink M.

Hum Brain Mapp. 2013 Sep;34(9):2015-24. doi: 10.1002/hbm.22047. Epub 2012 Feb 22.

PMID:
22359406
6.

Reduced proactive inhibition in schizophrenia is related to corticostriatal dysfunction and poor working memory.

Zandbelt BB, van Buuren M, Kahn RS, Vink M.

Biol Psychiatry. 2011 Dec 15;70(12):1151-8. doi: 10.1016/j.biopsych.2011.07.028. Epub 2011 Sep 8.

PMID:
21903198
7.

The role of stop-signal probability and expectation in proactive inhibition.

Vink M, Kaldewaij R, Zandbelt BB, Pas P, du Plessis S.

Eur J Neurosci. 2015 Apr;41(8):1086-94. doi: 10.1111/ejn.12879. Epub 2015 Apr 1.

PMID:
25832122
8.

Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents.

Somerville LH, Hare T, Casey BJ.

J Cogn Neurosci. 2011 Sep;23(9):2123-34. doi: 10.1162/jocn.2010.21572. Epub 2010 Sep 7.

9.

Childhood maltreatment is associated with a sex-dependent functional reorganization of a brain inhibitory control network.

Elton A, Tripathi SP, Mletzko T, Young J, Cisler JM, James GA, Kilts CD.

Hum Brain Mapp. 2014 Apr;35(4):1654-67. doi: 10.1002/hbm.22280. Epub 2013 Apr 24.

10.

On the role of the striatum in response inhibition.

Zandbelt BB, Vink M.

PLoS One. 2010 Nov 4;5(11):e13848. doi: 10.1371/journal.pone.0013848.

11.

A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex.

Cunillera T, Fuentemilla L, Brignani D, Cucurell D, Miniussi C.

PLoS One. 2014 Nov 26;9(11):e113537. doi: 10.1371/journal.pone.0113537. eCollection 2014.

12.

[Structural and functional neuroanatomy of attention-deficit hyperactivity disorder (ADHD)].

Emond V, Joyal C, Poissant H.

Encephale. 2009 Apr;35(2):107-14. doi: 10.1016/j.encep.2008.01.005. Epub 2008 Jul 7. Review. French.

PMID:
19393378
13.

Impaired right inferior frontal gyrus response to contextual cues in male veterans with PTSD during response inhibition.

van Rooij SJ, Rademaker AR, Kennis M, Vink M, Kahn RS, Geuze E.

J Psychiatry Neurosci. 2014 Sep;39(5):330-8.

14.

Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity.

Swann NC, Cai W, Conner CR, Pieters TA, Claffey MP, George JS, Aron AR, Tandon N.

Neuroimage. 2012 Feb 1;59(3):2860-70. doi: 10.1016/j.neuroimage.2011.09.049. Epub 2011 Sep 29.

15.

Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition.

Duann JR, Ide JS, Luo X, Li CS.

J Neurosci. 2009 Aug 12;29(32):10171-9. doi: 10.1523/JNEUROSCI.1300-09.2009.

16.

Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.

Christakou A, Halari R, Smith AB, Ifkovits E, Brammer M, Rubia K.

Neuroimage. 2009 Oct 15;48(1):223-36. doi: 10.1016/j.neuroimage.2009.06.070. Epub 2009 Jul 4. Erratum in: Neuroimage. 2010 Jan 1;49(1):1151.

PMID:
19580877
18.

The development of the neural substrates of cognitive control in adolescents with autism spectrum disorders.

Solomon M, Yoon JH, Ragland JD, Niendam TA, Lesh TA, Fairbrother W, Carter CS.

Biol Psychiatry. 2014 Sep 1;76(5):412-21. doi: 10.1016/j.biopsych.2013.08.036. Epub 2013 Oct 24.

19.

Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition.

Jahfari S, Waldorp L, van den Wildenberg WP, Scholte HS, Ridderinkhof KR, Forstmann BU.

J Neurosci. 2011 May 4;31(18):6891-9. doi: 10.1523/JNEUROSCI.5253-10.2011.

20.

The impact of serotonin transporter (5-HTTLPR) genotype on the development of resting-state functional connectivity in children and adolescents: a preliminary report.

Wiggins JL, Bedoyan JK, Peltier SJ, Ashinoff S, Carrasco M, Weng SJ, Welsh RC, Martin DM, Monk CS.

Neuroimage. 2012 Feb 1;59(3):2760-70. doi: 10.1016/j.neuroimage.2011.10.030. Epub 2011 Oct 18.

Items per page

Supplemental Content

Write to the Help Desk