Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 99

Similar articles for PubMed (Select 24521246)

1.

Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation.

Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK.

Mol Pharm. 2014 Apr 7;11(4):1250-8. doi: 10.1021/mp400703d. Epub 2014 Mar 25.

PMID:
24521246
2.

Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.

Essa S, Rabanel JM, Hildgen P.

Int J Pharm. 2011 Jun 15;411(1-2):178-87. doi: 10.1016/j.ijpharm.2011.02.039. Epub 2011 Mar 31.

PMID:
21458551
4.

In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content.

Sheng Y, Yuan Y, Liu C, Tao X, Shan X, Xu F.

J Mater Sci Mater Med. 2009 Sep;20(9):1881-91. doi: 10.1007/s10856-009-3746-9. Epub 2009 Apr 14.

PMID:
19365612
5.

Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery.

Parveen S, Sahoo SK.

Eur J Pharmacol. 2011 Nov 30;670(2-3):372-83. doi: 10.1016/j.ejphar.2011.09.023. Epub 2011 Sep 21. Erratum in: Eur J Pharmacol. 2014 Mar 15;727:186.

PMID:
21951969
6.

Short-chain PEG mixed monolayer protected gold clusters increase clearance and red blood cell counts.

Simpson CA, Agrawal AC, Balinski A, Harkness KM, Cliffel DE.

ACS Nano. 2011 May 24;5(5):3577-84. doi: 10.1021/nn103148x. Epub 2011 Apr 19.

7.

Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake.

Fontana G, Licciardi M, Mansueto S, Schillaci D, Giammona G.

Biomaterials. 2001 Nov;22(21):2857-65.

PMID:
11561891
8.

Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus.

Xu Q, Boylan NJ, Cai S, Miao B, Patel H, Hanes J.

J Control Release. 2013 Sep 10;170(2):279-86. doi: 10.1016/j.jconrel.2013.05.035. Epub 2013 Jun 7.

9.

Identification of polyethylene glycol-resistant macrophages on stealth imaging in vitro using fluorescent organosilica nanoparticles.

Nakamura M, Hayashi K, Nakano M, Kanadani T, Miyamoto K, Kori T, Horikawa K.

ACS Nano. 2015 Feb 24;9(2):1058-71. doi: 10.1021/nn502319r. Epub 2015 Feb 2.

PMID:
25629765
10.

Recent advances in stealth coating of nanoparticle drug delivery systems.

Amoozgar Z, Yeo Y.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Mar-Apr;4(2):219-33. doi: 10.1002/wnan.1157. Epub 2012 Jan 9. Review.

11.

PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics.

Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, Napier M, Bear JE, DeSimone JM.

Nano Lett. 2012 Oct 10;12(10):5304-10. doi: 10.1021/nl302638g. Epub 2012 Sep 5.

12.

Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield.

Larson TA, Joshi PP, Sokolov K.

ACS Nano. 2012 Oct 23;6(10):9182-90. doi: 10.1021/nn3035155. Epub 2012 Sep 25.

13.

The effect of PEG-5K grafting level and particle size on tumor accumulation and cellular uptake.

Lo CL, Chou MH, Lu PL, Lo IW, Chiang YT, Hung SY, Yang CY, Lin SY, Wey SP, Lo JM, Hsiue GH.

Int J Pharm. 2013 Nov 18;456(2):424-31. doi: 10.1016/j.ijpharm.2013.08.045. Epub 2013 Sep 2.

PMID:
24008083
14.

Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin.

Cho HJ, Yoon IS, Yoon HY, Koo H, Jin YJ, Ko SH, Shim JS, Kim K, Kwon IC, Kim DD.

Biomaterials. 2012 Feb;33(4):1190-200. doi: 10.1016/j.biomaterials.2011.10.064. Epub 2011 Nov 9.

PMID:
22074664
15.

Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan.

Sheng Y, Liu C, Yuan Y, Tao X, Yang F, Shan X, Zhou H, Xu F.

Biomaterials. 2009 Apr;30(12):2340-8. doi: 10.1016/j.biomaterials.2008.12.070. Epub 2009 Jan 17.

PMID:
19150737
16.

Assessment of PEG on polymeric particles surface, a key step in drug carrier translation.

Rabanel JM, Hildgen P, Banquy X.

J Control Release. 2014 Jul 10;185:71-87. doi: 10.1016/j.jconrel.2014.04.017. Epub 2014 Apr 22. Review.

PMID:
24768790
17.

Targeted nanoparticles assembled via complexation of boronic-acid-containing targeting moieties to diol-containing polymers.

Han H, Davis ME.

Bioconjug Chem. 2013 Apr 17;24(4):669-77. doi: 10.1021/bc300640j. Epub 2013 Mar 18.

18.

PEGylation of cationic, shell-crosslinked-knedel-like nanoparticles modulates inflammation and enhances cellular uptake in the lung.

Ibricevic A, Guntsen SP, Zhang K, Shrestha R, Liu Y, Sun JY, Welch MJ, Wooley KL, Brody SL.

Nanomedicine. 2013 Oct;9(7):912-22. doi: 10.1016/j.nano.2013.02.006. Epub 2013 Feb 27.

19.

Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate.

Ishihara T, Kubota T, Choi T, Higaki M.

J Pharmacol Exp Ther. 2009 May;329(2):412-7. doi: 10.1124/jpet.108.150276. Epub 2009 Feb 25.

20.

Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine.

Suk JS, Lai SK, Boylan NJ, Dawson MR, Boyle MP, Hanes J.

Nanomedicine (Lond). 2011 Feb;6(2):365-75. doi: 10.2217/nnm.10.123.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk