Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 106

1.

Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix.

Yamada S, Kurokawa Y, Miyajima S, Konagai M.

Nanoscale Res Lett. 2014 Feb 12;9(1):72. doi: 10.1186/1556-276X-9-72.

PMID:
24521208
[PubMed]
Free PMC Article
2.

Fabrication and characterization of silicon quantum dots in Si-rich silicon carbide films.

Chang GR, Ma F, Ma D, Xu K.

J Nanosci Nanotechnol. 2011 Dec;11(12):10824-8.

PMID:
22409005
[PubMed]
3.

Fast diffusion of H and creation of dangling bonds in hydrogenated amorphous silicon studied by in situ ESR

Das UK, Yasuda T, Yamasaki S.

Phys Rev Lett. 2000 Sep 11;85(11):2324-7.

PMID:
10978001
[PubMed - as supplied by publisher]
4.

Tunable photoluminescence from nc-Si/a-SiNx:H quantum dot thin films prepared by ICP-CVD.

Sain B, Das D.

Phys Chem Chem Phys. 2013 Mar 21;15(11):3881-8. doi: 10.1039/c3cp43875a.

PMID:
23407687
[PubMed]
5.

An investigation on the effect of high partial pressure of hydrogen on the nanocrystalline structure of silicon carbide thin films prepared by radio-frequency magnetron sputtering.

Daouahi M, Omri M, Kerm AG, Al-Agel FA, Rekik N.

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Oct 22;136PC:1409-1417. doi: 10.1016/j.saa.2014.10.029. [Epub ahead of print]

PMID:
25459700
[PubMed - as supplied by publisher]
6.

Homogeneous nanocrystalline cubic silicon carbide films prepared by inductively coupled plasma chemical vapor deposition.

Cheng Q, Xu S, Long J, Huang S, Guo J.

Nanotechnology. 2007 Nov 21;18(46):465601. doi: 10.1088/0957-4484/18/46/465601. Epub 2007 Oct 12.

PMID:
21730481
[PubMed]
7.

Silicon quantum dot superlattice solar cell structure including silicon nanocrystals in a photogeneration layer.

Yamada S, Kurokawa Y, Miyajima S, Konagai M.

Nanoscale Res Lett. 2014 May 20;9(1):246. doi: 10.1186/1556-276X-9-246. eCollection 2014.

PMID:
24936160
[PubMed]
Free PMC Article
8.

Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films.

Pandey SC, Singh T, Maroudas D.

J Chem Phys. 2009 Jul 21;131(3):034503. doi: 10.1063/1.3152846.

PMID:
19624205
[PubMed - indexed for MEDLINE]
9.

Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon.

Su T, Taylor PC, Ganguly G, Carlson DE.

Phys Rev Lett. 2002 Jul 1;89(1):015502. Epub 2002 Jun 13.

PMID:
12097051
[PubMed]
10.

Role of hydrogen plasma pretreatment in improving passivation of the silicon surface for solar cells applications.

Wang F, Zhang X, Wang L, Jiang Y, Wei C, Sun J, Zhao Y.

ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15098-104. doi: 10.1021/am5031837. Epub 2014 Aug 27.

PMID:
25141300
[PubMed - in process]
11.

Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon.

Yang J, Bhattacharya P.

Opt Express. 2008 Mar 31;16(7):5136-40.

PMID:
18542613
[PubMed - indexed for MEDLINE]
12.

Investigations on silicon/amorphous-carbon and silicon/nanocrystalline palladium/ amorphous-carbon interfaces.

Roy M, Sengupta P, Tyagi AK, Kale GB.

J Nanosci Nanotechnol. 2008 Aug;8(8):4295-302.

PMID:
19049221
[PubMed]
13.

N-type crystalline silicon films free of amorphous silicon deposited on glass by HCl addition using hot wire chemical vapour deposition.

Chung YB, Park HK, Lee SH, Song JH, Hwang NM.

J Nanosci Nanotechnol. 2011 Sep;11(9):8242-5.

PMID:
22097562
[PubMed]
14.

Structural Evolutions in Polymer-Derived Carbon-Rich Amorphous Silicon Carbide.

Wang K, Ma B, Li X, Wang Y, An L.

J Phys Chem A. 2014 Dec 9. [Epub ahead of print]

PMID:
25490064
[PubMed - as supplied by publisher]
15.

Crystallization behavior of silicon quantum dots in a silicon nitride matrix.

Ha R, Kim S, Kim HJ, Lee JC, Bae JS, Kim Y.

J Nanosci Nanotechnol. 2012 Feb;12(2):1448-52.

PMID:
22629976
[PubMed]
16.

Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.

Cheng Q, Xu S, Ostrikov KK.

Nanotechnology. 2009 May 27;20(21):215606. doi: 10.1088/0957-4484/20/21/215606. Epub 2009 May 6.

PMID:
19423937
[PubMed - indexed for MEDLINE]
17.

Mechanism of hydrogen-induced crystallization of amorphous silicon.

Sriraman S, Agarwal S, Aydil ES, Maroudas D.

Nature. 2002 Jul 4;418(6893):62-5.

PMID:
12097905
[PubMed]
18.

Characterization of a-SiC(x):H thin films as an encapsulation material for integrated silicon based neural interface devices.

Hsu JM, Tathireddy P, Rieth L, Normann AR, Solzbacher F.

Thin Solid Films. 2007 Nov 1;516(1):34-41.

PMID:
18437249
[PubMed]
Free PMC Article
19.

Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide.

Chang GR, Ma F, Ma DY, Xu KW.

Nanotechnology. 2010 Nov 19;21(46):465605. doi: 10.1088/0957-4484/21/46/465605. Epub 2010 Oct 26.

PMID:
20975214
[PubMed]
20.

Physical properties of ultrafast deposited micro- and nanothickness amorphous hydrogenated carbon films for medical devices and prostheses.

Zaharia T, Sullivan IL, Saied SO, Bosch RC, Bijker MD.

Proc Inst Mech Eng H. 2007 Feb;221(2):161-72.

PMID:
17385570
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk