Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 116

Similar articles for PubMed (Select 24501120)

1.

Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.

Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, Walker GC.

Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3561-6. doi: 10.1073/pnas.1400450111. Epub 2014 Feb 5.

2.

Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.

De Nisco NJ, Abo RP, Wu CM, Penterman J, Walker GC.

Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3217-24. doi: 10.1073/pnas.1400421111. Epub 2014 Feb 5.

3.

Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis.

Haag AF, Baloban M, Sani M, Kerscher B, Pierre O, Farkas A, Longhi R, Boncompagni E, Hérouart D, Dall'angelo S, Kondorosi E, Zanda M, Mergaert P, Ferguson GP.

PLoS Biol. 2011 Oct;9(10):e1001169. doi: 10.1371/journal.pbio.1001169. Epub 2011 Oct 4.

4.

The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.

Torres-Quesada O, Oruezabal RI, Peregrina A, Jofré E, Lloret J, Rivilla R, Toro N, Jiménez-Zurdo JI.

BMC Microbiol. 2010 Mar 6;10:71. doi: 10.1186/1471-2180-10-71.

5.

Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide.

Haag AF, Kerscher B, Dall'Angelo S, Sani M, Longhi R, Baloban M, Wilson HM, Mergaert P, Zanda M, Ferguson GP.

J Biol Chem. 2012 Mar 30;287(14):10791-8. doi: 10.1074/jbc.M111.311316. Epub 2012 Feb 17.

6.

Plant peptides govern terminal differentiation of bacteria in symbiosis.

Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P.

Science. 2010 Feb 26;327(5969):1122-6. doi: 10.1126/science.1184057.

7.

Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection.

Kobayashi H, De Nisco NJ, Chien P, Simmons LA, Walker GC.

Mol Microbiol. 2009 Aug;73(4):586-600. doi: 10.1111/j.1365-2958.2009.06794.x. Epub 2009 Jul 7.

8.

Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti.

Maclean AM, White CE, Fowler JE, Finan TM.

Mol Plant Microbe Interact. 2009 Sep;22(9):1116-27. doi: 10.1094/MPMI-22-9-1116.

9.

A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules.

Queiroux C, Washburn BK, Davis OM, Stewart J, Brewer TE, Lyons MR, Jones KM.

BMC Microbiol. 2012 May 15;12:74. doi: 10.1186/1471-2180-12-74.

10.

Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms.

Farkas A, Maróti G, Durgő H, Györgypál Z, Lima RM, Medzihradszky KF, Kereszt A, Mergaert P, Kondorosi É.

Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5183-8. doi: 10.1073/pnas.1404169111. Epub 2014 Mar 25.

11.

Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization-associated changes in the transcriptome of Sinorhizobium meliloti.

Tiricz H, Szucs A, Farkas A, Pap B, Lima RM, Maróti G, Kondorosi É, Kereszt A.

Appl Environ Microbiol. 2013 Nov;79(21):6737-46. doi: 10.1128/AEM.01791-13. Epub 2013 Aug 30.

12.

Control of NO level in rhizobium-legume root nodules: not only a plant globin story.

Meilhoc E, Blanquet P, Cam Y, Bruand C.

Plant Signal Behav. 2013 Oct;8(10):doi: 10.4161/psb.25923.

13.

Molecular insights into bacteroid development during Rhizobium-legume symbiosis.

Haag AF, Arnold MF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP.

FEMS Microbiol Rev. 2013 May;37(3):364-83. doi: 10.1111/1574-6976.12003. Epub 2013 Apr 2. Review.

14.

Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches.

Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P.

PLoS One. 2010 Mar 4;5(3):e9519. doi: 10.1371/journal.pone.0009519.

15.

Identification of nodule-specific cysteine-rich plant peptides in endosymbiotic bacteria.

Durgo H, Klement E, Hunyadi-Gulyas E, Szucs A, Kereszt A, Medzihradszky KF, Kondorosi E.

Proteomics. 2015 Feb 17. doi: 10.1002/pmic.201400385. [Epub ahead of print]

PMID:
25690539
16.

Transcriptome analysis of Sinorhizobium meliloti during symbiosis.

Ampe F, Kiss E, Sabourdy F, Batut J.

Genome Biol. 2003;4(2):R15. Epub 2003 Jan 31.

17.

Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation.

Benyamina SM, Baldacci-Cresp F, Couturier J, Chibani K, Hopkins J, Bekki A, de Lajudie P, Rouhier N, Jacquot JP, Alloing G, Puppo A, Frendo P.

Environ Microbiol. 2013 Mar;15(3):795-810. doi: 10.1111/j.1462-2920.2012.02835.x. Epub 2012 Aug 14.

PMID:
22891731
18.

The involvement of Medicago truncatula non-specific lipid transfer protein N5 in the control of rhizobial infection.

Pii Y, Molesini B, Pandolfini T.

Plant Signal Behav. 2013 Jul;8(7):e24836. doi: 10.4161/psb.24836. Epub 2013 May 6.

19.

Sinorhizobium meliloti metabolism in the root nodule: a proteomic perspective.

Djordjevic MA.

Proteomics. 2004 Jul;4(7):1859-72. Review.

PMID:
15221743
20.

A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis.

Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long S.

Science. 2010 Feb 26;327(5969):1126-9. doi: 10.1126/science.1184096.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk