Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Salinity affects compositional traits of epibacterial communities on the brown macroalga Fucus vesiculosus.

Stratil SB, Neulinger SC, Knecht H, Friedrichs AK, Wahl M.

FEMS Microbiol Ecol. 2014 May;88(2):272-9. doi: 10.1111/1574-6941.12292. Epub 2014 Mar 10.

2.

Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus.

Stratil SB, Neulinger SC, Knecht H, Friedrichs AK, Wahl M.

Microbiologyopen. 2013 Apr;2(2):338-49. doi: 10.1002/mbo3.79. Epub 2013 Mar 13.

3.

Epibacterial community patterns on marine macroalgae are host-specific but temporally variable.

Lachnit T, Meske D, Wahl M, Harder T, Schmitz R.

Environ Microbiol. 2011 Mar;13(3):655-65. doi: 10.1111/j.1462-2920.2010.02371.x. Epub 2010 Nov 15.

PMID:
21078035
4.

Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus.

Lachnit T, Fischer M, Künzel S, Baines JF, Harder T.

FEMS Microbiol Ecol. 2013 May;84(2):411-20. doi: 10.1111/1574-6941.12071. Epub 2013 Feb 5.

5.

Defence chemistry modulation by light and temperature shifts and the resulting effects on associated epibacteria of Fucus vesiculosus.

Saha M, Rempt M, Stratil SB, Wahl M, Pohnert G, Weinberger F.

PLoS One. 2014 Oct 31;9(10):e105333. doi: 10.1371/journal.pone.0105333. eCollection 2014.

6.

Seasonal variation in the antifouling defence of the temperate brown alga Fucus vesiculosus.

Saha M, Wahl M.

Biofouling. 2013;29(6):661-8. doi: 10.1080/08927014.2013.795953. Epub 2013 Jun 11.

PMID:
23755914
7.

A protective coat of microorganisms on macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on barnacle attachment.

Nasrolahi A, Stratil SB, Jacob KJ, Wahl M.

FEMS Microbiol Ecol. 2012 Sep;81(3):583-95. doi: 10.1111/j.1574-6941.2012.01384.x. Epub 2012 May 14.

8.
9.

Restructuring of Epibacterial Communities on Fucus vesiculosus forma mytili in Response to Elevated pCO2 and Increased Temperature Levels.

Mensch B, Neulinger SC, Graiff A, Pansch A, Künzel S, Fischer MA, Schmitz RA.

Front Microbiol. 2016 Mar 31;7:434. doi: 10.3389/fmicb.2016.00434. eCollection 2016.

10.

FLUORESCENCE EMISSION SPECTRA OF MARINE AND BRACKISH-WATER ECOTYPES OF FUCUS VESICULOSUS AND FUCUS RADICANS (PHAEOPHYCEAE) REVEAL DIFFERENCES IN LIGHT-HARVESTING APPARATUS(1).

Maria Gylle A, Rantamäki S, Ekelund NG, Tyystjärvi E.

J Phycol. 2011 Feb;47(1):98-105. doi: 10.1111/j.1529-8817.2010.00928.x. Epub 2010 Dec 17.

PMID:
27021714
11.

Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea.

Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF.

ISME J. 2011 Oct;5(10):1571-9. doi: 10.1038/ismej.2011.41. Epub 2011 Apr 7.

12.

Surface-associated fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus.

Saha M, Rempt M, Grosser K, Pohnert G, Weinberger F.

Biofouling. 2011 Apr;27(4):423-33. doi: 10.1080/08927014.2011.580841.

PMID:
21547758
13.

Community composition of the Planctomycetes associated with different macroalgae.

Bondoso J, Balagué V, Gasol JM, Lage OM.

FEMS Microbiol Ecol. 2014 Jun;88(3):445-56. doi: 10.1111/1574-6941.12258. Epub 2014 May 12.

14.

Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae.

Trias R, García-Lledó A, Sánchez N, López-Jurado JL, Hallin S, Bañeras L.

Appl Environ Microbiol. 2012 Jan;78(2):318-25. doi: 10.1128/AEM.05904-11. Epub 2011 Nov 11.

15.

Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

Dupont CL, Larsson J, Yooseph S, Ininbergs K, Goll J, Asplund-Samuelsson J, McCrow JP, Celepli N, Allen LZ, Ekman M, Lucas AJ, Hagström Å, Thiagarajan M, Brindefalk B, Richter AR, Andersson AF, Tenney A, Lundin D, Tovchigrechko A, Nylander JA, Brami D, Badger JH, Allen AE, Rusch DB, Hoffman J, Norrby E, Friedman R, Pinhassi J, Venter JC, Bergman B.

PLoS One. 2014 Feb 27;9(2):e89549. doi: 10.1371/journal.pone.0089549. eCollection 2014.

16.

Temporal and spatial diversity of bacterial communities in coastal waters of the South china sea.

Du J, Xiao K, Li L, Ding X, Liu H, Lu Y, Zhou S.

PLoS One. 2013 Jun 13;8(6):e66968. doi: 10.1371/journal.pone.0066968. Print 2013.

17.

Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL.

Appl Environ Microbiol. 2010 Feb;76(3):757-68. doi: 10.1128/AEM.02409-09. Epub 2009 Nov 30.

18.

Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms?

Wang J, Yang D, Zhang Y, Shen J, van der Gast C, Hahn MW, Wu Q.

PLoS One. 2011;6(11):e27597. doi: 10.1371/journal.pone.0027597. Epub 2011 Nov 18.

19.

Responses of Baltic Sea ice and open-water natural bacterial communities to salinity change.

Kaartokallio H, Laamanen M, Sivonen K.

Appl Environ Microbiol. 2005 Aug;71(8):4364-71.

20.

Nutrient availability modifies species abundance and community structure of Fucus-associated littoral benthic fauna.

Korpinen S, Jormalainen V, Pettay E.

Mar Environ Res. 2010 Sep-Oct;70(3-4):283-92. doi: 10.1016/j.marenvres.2010.05.010. Epub 2010 Jun 1.

PMID:
20691336
Items per page

Supplemental Content

Write to the Help Desk