Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 103

Similar articles for PubMed (Select 24486966)

1.

RanBP9 overexpression reduces dendritic arbor and spine density.

Wang H, Lewsadder M, Dorn E, Xu S, Lakshmana MK.

Neuroscience. 2014 Apr 18;265:253-62. doi: 10.1016/j.neuroscience.2014.01.045. Epub 2014 Jan 31.

2.

RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer's disease.

Wang R, Palavicini JP, Wang H, Maiti P, Bianchi E, Xu S, Lloyd BN, Dawson-Scully K, Kang DE, Lakshmana MK.

Neurobiol Dis. 2014 Sep;69:169-79. doi: 10.1016/j.nbd.2014.05.029. Epub 2014 Jun 2.

PMID:
24892886
3.

RanBP9 aggravates synaptic damage in the mouse brain and is inversely correlated to spinophilin levels in Alzheimer's brain synaptosomes.

Palavicini JP, Wang H, Bianchi E, Xu S, Rao JS, Kang DE, Lakshmana MK.

Cell Death Dis. 2013 Jun 13;4:e667. doi: 10.1038/cddis.2013.183.

4.

RanBP9 overexpression down-regulates phospho-cofilin, causes early synaptic deficits and impaired learning, and accelerates accumulation of amyloid plaques in the mouse brain.

Palavicini JP, Wang H, Minond D, Bianchi E, Xu S, Lakshmana MK.

J Alzheimers Dis. 2014;39(4):727-40. doi: 10.3233/JAD-131550.

PMID:
24254706
5.

RanBP9 overexpression accelerates loss of pre and postsynaptic proteins in the APΔE9 transgenic mouse brain.

Wang H, Wang R, Xu S, Lakshmana MK.

PLoS One. 2014 Jan 14;9(1):e85484. doi: 10.1371/journal.pone.0085484. eCollection 2014.

6.

Pivotal role of the RanBP9-cofilin pathway in Aβ-induced apoptosis and neurodegeneration.

Woo JA, Jung AR, Lakshmana MK, Bedrossian A, Lim Y, Bu JH, Park SA, Koo EH, Mook-Jung I, Kang DE.

Cell Death Differ. 2012 Sep;19(9):1413-23. doi: 10.1038/cdd.2012.14. Epub 2012 Feb 24.

7.

COPS5 (Jab1) protein increases β site processing of amyloid precursor protein and amyloid β peptide generation by stabilizing RanBP9 protein levels.

Wang H, Dey D, Carrera I, Minond D, Bianchi E, Xu S, Lakshmana MK.

J Biol Chem. 2013 Sep 13;288(37):26668-77. doi: 10.1074/jbc.M113.476689. Epub 2013 Aug 7.

8.

Pivotal role of RanBP9 in integrin-dependent focal adhesion signaling and assembly.

Woo JA, Roh SE, Lakshmana MK, Kang DE.

FASEB J. 2012 Apr;26(4):1672-81. doi: 10.1096/fj.11-194423. Epub 2012 Jan 5.

9.

Mitochondrial dysfunction and calcium deregulation by the RanBP9-cofilin pathway.

Roh SE, Woo JA, Lakshmana MK, Uhlar C, Ankala V, Boggess T, Liu T, Hong YH, Mook-Jung I, Kim SJ, Kang DE.

FASEB J. 2013 Dec;27(12):4776-89. doi: 10.1096/fj.13-234765. Epub 2013 Aug 27.

10.

Role of RanBP9 on amyloidogenic processing of APP and synaptic protein levels in the mouse brain.

Lakshmana MK, Hayes CD, Bennett SP, Bianchi E, Reddy KM, Koo EH, Kang DE.

FASEB J. 2012 May;26(5):2072-83. doi: 10.1096/fj.11-196709. Epub 2012 Jan 31. Erratum in: FASEB J. 2015 Mar;29(3):1124.

11.

Novel role of RanBP9 in BACE1 processing of amyloid precursor protein and amyloid beta peptide generation.

Lakshmana MK, Yoon IS, Chen E, Bianchi E, Koo EH, Kang DE.

J Biol Chem. 2009 May 1;284(18):11863-72. doi: 10.1074/jbc.M807345200. Epub 2009 Feb 27.

12.

The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner.

Neuhoff H, Sassoè-Pognetto M, Panzanelli P, Maas C, Witke W, Kneussel M.

Eur J Neurosci. 2005 Jan;21(1):15-25.

PMID:
15654839
13.

A fragment of the scaffolding protein RanBP9 is increased in Alzheimer's disease brains and strongly potentiates amyloid-beta peptide generation.

Lakshmana MK, Chung JY, Wickramarachchi S, Tak E, Bianchi E, Koo EH, Kang DE.

FASEB J. 2010 Jan;24(1):119-27. doi: 10.1096/fj.09-136457. Epub 2009 Sep 3.

14.

Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis.

Liu T, Roh SE, Woo JA, Ryu H, Kang DE.

Cell Death Dis. 2013 Jan 24;4:e476. doi: 10.1038/cddis.2012.203.

15.

Beta amyloid-independent role of amyloid precursor protein in generation and maintenance of dendritic spines.

Lee KJ, Moussa CE, Lee Y, Sung Y, Howell BW, Turner RS, Pak DT, Hoe HS.

Neuroscience. 2010 Aug 11;169(1):344-56. doi: 10.1016/j.neuroscience.2010.04.078. Epub 2010 May 6.

16.

ApoE4 delays dendritic spine formation during neuron development and accelerates loss of mature spines in vitro.

Nwabuisi-Heath E, Rebeck GW, Ladu MJ, Yu C.

ASN Neuro. 2014 Jan 13;6(1):e00134. doi: 10.1042/AN20130043.

17.

Neural cell adhesion molecule NrCAM regulates Semaphorin 3F-induced dendritic spine remodeling.

Demyanenko GP, Mohan V, Zhang X, Brennaman LH, Dharbal KE, Tran TS, Manis PB, Maness PF.

J Neurosci. 2014 Aug 20;34(34):11274-87. doi: 10.1523/JNEUROSCI.1774-14.2014.

18.

Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer's disease.

Perez-Cruz C, Nolte MW, van Gaalen MM, Rustay NR, Termont A, Tanghe A, Kirchhoff F, Ebert U.

J Neurosci. 2011 Mar 9;31(10):3926-34. doi: 10.1523/JNEUROSCI.6142-10.2011.

19.

A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis.

Osterweil E, Wells DG, Mooseker MS.

J Cell Biol. 2005 Jan 17;168(2):329-38.

20.

Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation.

Danglot L, Freret T, Le Roux N, Narboux Nême N, Burgo A, Hyenne V, Roumier A, Contremoulins V, Dauphin F, Bizot JC, Vodjdani G, Gaspar P, Boulouard M, Poncer JC, Galli T, Simmler MC.

J Neurosci. 2012 Jun 27;32(26):9007-22. doi: 10.1523/JNEUROSCI.3084-11.2012.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk