Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design.

Huang JW, Chen CC, Huang CH, Huang TY, Wu TH, Cheng YS, Ko TP, Lin CY, Liu JR, Guo RT.

Biochim Biophys Acta. 2014 Mar;1844(3):663-9. doi: 10.1016/j.bbapap.2014.01.011. Epub 2014 Jan 28.

PMID:
24480109
2.

Preliminary X-ray diffraction analysis of thermostable β-1,4-mannanase from Aspergillus niger BK01.

Luo W, Huang JW, Huang CH, Huang TY, Chan HC, Liu JR, Guo RT, Chen CC.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Oct;69(Pt 10):1100-2. doi: 10.1107/S1744309113023348. Epub 2013 Sep 28.

3.

Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01.

Do BC, Dang TT, Berrin JG, Haltrich D, To KA, Sigoillot JC, Yamabhai M.

Microb Cell Fact. 2009 Nov 13;8:59. doi: 10.1186/1475-2859-8-59.

4.

Hydrolysis of softwood by Aspergillus mannanase: role of a carbohydrate-binding module.

Pham TA, Berrin JG, Record E, To KA, Sigoillot JC.

J Biotechnol. 2010 Aug 2;148(4):163-70. doi: 10.1016/j.jbiotec.2010.05.012. Epub 2010 Jun 10.

PMID:
20541570
5.

Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a beta-mannanase.

Ademark P, Varga A, Medve J, Harjunpää V, Drakenberg T, Tjerneld F, Stålbrand H.

J Biotechnol. 1998 Aug 27;63(3):199-210.

PMID:
9803534
6.

Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity.

Wang C, Luo H, Niu C, Shi P, Huang H, Meng K, Bai Y, Wang K, Hua H, Yao B.

Appl Microbiol Biotechnol. 2015 Feb;99(3):1217-28. doi: 10.1007/s00253-014-5979-x. Epub 2014 Aug 8.

PMID:
25104029
7.
8.

Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris.

Li JF, Zhao SG, Tang CD, Wang JQ, Wu MC.

J Agric Food Chem. 2012 Jan 25;60(3):765-73. doi: 10.1021/jf2041565. Epub 2012 Jan 10.

PMID:
22225502
9.

From structure to function: insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman.

Yan XX, An XM, Gui LL, Liang DC.

J Mol Biol. 2008 Jun 6;379(3):535-44. doi: 10.1016/j.jmb.2008.03.068. Epub 2008 Apr 7.

PMID:
18455734
10.

Endo-β-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity.

Gonçalves AM, Silva CS, Madeira TI, Coelho R, de Sanctis D, San Romão MV, Bento I.

Acta Crystallogr D Biol Crystallogr. 2012 Nov;68(Pt 11):1468-78. doi: 10.1107/S0907444912034646. Epub 2012 Oct 18.

PMID:
23090396
11.

Cloning and bioinformatic analysis of an acidophilic beta-mannanase gene, Anman5A, from Aspergillus niger LW-1.

Zhao SG, Wu MC, Tang CD, Gao SJ, Zhang HM, Li JF.

Prikl Biokhim Mikrobiol. 2012 Sep-Oct;48(5):522-30.

PMID:
23101390
12.

β-Mannanase production by Aspergillus niger BCC4525 and its efficacy on broiler performance.

Sornlake W, Matetaviparee P, Rattanaphan N, Tanapongpipat S, Eurwilaichitr L.

J Sci Food Agric. 2013 Oct;93(13):3345-51. doi: 10.1002/jsfa.6183. Epub 2013 May 29.

PMID:
23716483
13.

The structural analysis and the role of calcium binding site for thermal stability in mannanase.

Kumagai Y, Kawakami K, Mukaihara T, Kimura M, Hatanaka T.

Biochimie. 2012 Dec;94(12):2783-90. doi: 10.1016/j.biochi.2012.09.012. Epub 2012 Sep 23.

PMID:
23009928
14.

Directed modification of the Aspergillus usamii β-mannanase to improve its substrate affinity by in silico design and site-directed mutagenesis.

Li J, Wei X, Tang C, Wang J, Zhao M, Pang Q, Wu M.

J Ind Microbiol Biotechnol. 2014 Apr;41(4):693-700. doi: 10.1007/s10295-014-1406-7. Epub 2014 Feb 4.

PMID:
24493565
15.

Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions.

Zhao Y, Zhang Y, Cao Y, Qi J, Mao L, Xue Y, Gao F, Peng H, Wang X, Gao GF, Ma Y.

PLoS One. 2011 Jan 28;6(1):e14608. doi: 10.1371/journal.pone.0014608.

16.

Fusing a carbohydrate-binding module into the Aspergillus usamii β-mannanase to improve its thermostability and cellulose-binding capacity by in silico design.

Tang CD, Li JF, Wei XH, Min R, Gao SJ, Wang JQ, Yin X, Wu MC.

PLoS One. 2013 May 31;8(5):e64766. doi: 10.1371/journal.pone.0064766. Print 2013.

17.
18.

Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) beta-glucosidase from Aspergillus niger ASKU28.

Thongpoo P, McKee LS, Araújo AC, Kongsaeree PT, Brumer H.

Biochim Biophys Acta. 2013 Mar;1830(3):2739-49.

PMID:
23201198
19.

Production of Aspergillus niger β-mannosidase in Pichia pastoris.

Fliedrová B, Gerstorferová D, Křen V, Weignerová L.

Protein Expr Purif. 2012 Oct;85(2):159-64. doi: 10.1016/j.pep.2012.07.012. Epub 2012 Aug 3.

PMID:
22884703
20.

Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger.

Tahir TA, Berrin JG, Flatman R, Roussel A, Roepstorff P, Williamson G, Juge N.

J Biol Chem. 2002 Nov 15;277(46):44035-43. Epub 2002 Aug 30.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk