Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 235

1.
2.

Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A.

Jiang L, Qian J, Yang X, Yan Y, Liu Q, Wang K, Wang K.

Anal Chim Acta. 2014 Jan 2;806:128-35. doi: 10.1016/j.aca.2013.11.003. Epub 2013 Nov 14.

PMID:
24331048
3.

Amperometric aptasensor for thrombin detection using enzyme-mediated direct electrochemistry and DNA-based signal amplification strategy.

Bai L, Chai Y, Yuan R, Yuan Y, Xie S, Jiang L.

Biosens Bioelectron. 2013 Dec 15;50:325-30. doi: 10.1016/j.bios.2013.06.050. Epub 2013 Jul 4.

PMID:
23880107
4.

Cu-Based Metal-Organic Frameworks as a Catalyst To Construct a Ratiometric Electrochemical Aptasensor for Sensitive Lipopolysaccharide Detection.

Shen WJ, Zhuo Y, Chai YQ, Yuan R.

Anal Chem. 2015 Nov 17;87(22):11345-52. doi: 10.1021/acs.analchem.5b02694. Epub 2015 Oct 26.

PMID:
26465256
5.

Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques.

Yao GH, Liang RP, Yu XD, Huang CF, Zhang L, Qiu JD.

Anal Chem. 2015 Jan 20;87(2):929-36. doi: 10.1021/ac503016f. Epub 2014 Dec 24.

PMID:
25494977
6.

Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene.

Jiang L, Yuan R, Chai Y, Yuan Y, Bai L, Wang Y.

Analyst. 2012 May 21;137(10):2415-20. doi: 10.1039/c2an35255a. Epub 2012 Apr 10.

PMID:
22489284
7.

A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification.

Liu X, Qin Y, Deng C, Xiang J, Li Y.

Talanta. 2015 Jan;132:150-4. doi: 10.1016/j.talanta.2014.08.072. Epub 2014 Sep 7.

PMID:
25476292
8.

Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification.

Lee CY, Wu KY, Su HL, Hung HY, Hsieh YZ.

Biosens Bioelectron. 2013 Jan 15;39(1):133-8. doi: 10.1016/j.bios.2012.07.009. Epub 2012 Jul 24.

PMID:
22883750
9.

Label-free electrochemical aptasensor for sensitive thrombin detection using layer-by-layer self-assembled multilayers with toluidine blue-graphene composites and gold nanoparticles.

Xie S, Yuan R, Chai Y, Bai L, Yuan Y, Wang Y.

Talanta. 2012 Aug 30;98:7-13. doi: 10.1016/j.talanta.2012.06.019. Epub 2012 Jun 22.

PMID:
22939121
10.

A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.

Yan G, Wang Y, He X, Wang K, Liu J, Du Y.

Biosens Bioelectron. 2013 Jun 15;44:57-63. doi: 10.1016/j.bios.2013.01.010. Epub 2013 Jan 16.

PMID:
23391707
11.

Harnessing aptamers for electrochemical detection of endotoxin.

Kim SE, Su W, Cho M, Lee Y, Choe WS.

Anal Biochem. 2012 May 1;424(1):12-20. doi: 10.1016/j.ab.2012.02.016. Epub 2012 Feb 25.

PMID:
22370280
12.

Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles-graphene modified electrode with enzyme functionalized carbon sphere as tracer.

Dong H, Zhu Z, Ju H, Yan F.

Biosens Bioelectron. 2012 Mar 15;33(1):228-32. doi: 10.1016/j.bios.2012.01.006. Epub 2012 Jan 16.

PMID:
22305443
13.

Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres.

Guo S, Du Y, Yang X, Dong S, Wang E.

Anal Chem. 2011 Oct 15;83(20):8035-40. doi: 10.1021/ac2019552. Epub 2011 Sep 25.

PMID:
21910432
14.

Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles.

Deng C, Chen J, Nie Z, Wang M, Chu X, Chen X, Xiao X, Lei C, Yao S.

Anal Chem. 2009 Jan 15;81(2):739-45. doi: 10.1021/ac800958a.

PMID:
19072036
15.

General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe.

Li J, Fu HE, Wu LJ, Zheng AX, Chen GN, Yang HH.

Anal Chem. 2012 Jun 19;84(12):5309-15. doi: 10.1021/ac3006186. Epub 2012 Jun 7.

PMID:
22642720
16.

Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification.

Ji H, Yan F, Lei J, Ju H.

Anal Chem. 2012 Aug 21;84(16):7166-71. doi: 10.1021/ac3015356. Epub 2012 Aug 1.

PMID:
22823454
17.

Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles.

Yao GH, Liang RP, Huang CF, Zhang L, Qiu JD.

Anal Chim Acta. 2015 Apr 29;871:28-34. doi: 10.1016/j.aca.2015.02.028. Epub 2015 Feb 12.

PMID:
25847158
18.

Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A.

Hun X, Liu F, Mei Z, Ma L, Wang Z, Luo X.

Biosens Bioelectron. 2013 Jan 15;39(1):145-51. doi: 10.1016/j.bios.2012.07.005. Epub 2012 Jul 17.

PMID:
22938841
19.

Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy.

Yang X, Qian J, Jiang L, Yan Y, Wang K, Liu Q, Wang K.

Bioelectrochemistry. 2014 Apr;96:7-13. doi: 10.1016/j.bioelechem.2013.11.006. Epub 2013 Dec 4.

PMID:
24355136
20.

Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer-AuNPs-HRP conjugates.

Zhao J, Zhang Y, Li H, Wen Y, Fan X, Lin F, Tan L, Yao S.

Biosens Bioelectron. 2011 Jan 15;26(5):2297-303. doi: 10.1016/j.bios.2010.09.056. Epub 2010 Oct 8.

PMID:
21030239
Items per page

Supplemental Content

Write to the Help Desk