Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Methods for modeling cytoskeletal and DNA filaments.

Andrews SS.

Phys Biol. 2014 Feb;11(1):011001. doi: 10.1088/1478-3975/11/1/011001. Epub 2014 Jan 29. Review.

PMID:
24476634
2.

Origin of twist-bend coupling in actin filaments.

De La Cruz EM, Roland J, McCullough BR, Blanchoin L, Martiel JL.

Biophys J. 2010 Sep 22;99(6):1852-60. doi: 10.1016/j.bpj.2010.07.009.

3.

Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Foffi G, Pastore A, Piazza F, Temussi PA.

Phys Biol. 2013 Aug 2;10(4):040301. [Epub ahead of print]

PMID:
23912807
5.

Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm.

Seol Y, Li J, Nelson PC, Perkins TT, Betterton MD.

Biophys J. 2007 Dec 15;93(12):4360-73. Epub 2007 Aug 31.

6.

DNA-protein binding rates: bending fluctuation and hydrodynamic coupling effects.

von Hansen Y, Netz RR, Hinczewski M.

J Chem Phys. 2010 Apr 7;132(13):135103. doi: 10.1063/1.3352571.

PMID:
20387960
7.

Effect of hydrodynamic interaction on partially stretched polymers.

Sain A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061919. Epub 2008 Jun 23.

PMID:
18643312
8.

Continuum descriptions of cytoskeletal dynamics.

Kruse K.

J Nanobiotechnology. 2013;11 Suppl 1:S5. doi: 10.1186/1477-3155-11-S1-S5. Epub 2013 Dec 10.

9.

Averaged implicit hydrodynamic model of semiflexible filaments.

Chandran PL, Mofrad MR.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031920. Epub 2010 Mar 26.

PMID:
20365783
10.

Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics.

McCullough BR, Blanchoin L, Martiel JL, De la Cruz EM.

J Mol Biol. 2008 Sep 5;381(3):550-8. doi: 10.1016/j.jmb.2008.05.055. Epub 2008 May 29.

11.

Probing the elasticity of DNA on short length scales by modeling supercoiling under tension.

Schöpflin R, Brutzer H, Müller O, Seidel R, Wedemann G.

Biophys J. 2012 Jul 18;103(2):323-30. doi: 10.1016/j.bpj.2012.05.050. Epub 2012 Jul 17.

12.

Biophysically realistic filament bending dynamics in agent-based biological simulation.

Alberts JB.

PLoS One. 2009;4(3):e4748. doi: 10.1371/journal.pone.0004748. Epub 2009 Mar 13.

13.

Statics and dynamics of the wormlike bundle model.

Heussinger C, Schüller F, Frey E.

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021904. Epub 2010 Feb 3.

PMID:
20365592
14.

Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes.

Löwe J, Amos LA.

Int J Biochem Cell Biol. 2009 Feb;41(2):323-9. doi: 10.1016/j.biocel.2008.08.010. Epub 2008 Aug 13. Review.

PMID:
18768164
15.

Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ.

Mateos-Gil P, Paez A, Hörger I, Rivas G, Vicente M, Tarazona P, Vélez M.

Proc Natl Acad Sci U S A. 2012 May 22;109(21):8133-8. doi: 10.1073/pnas.1204844109. Epub 2012 May 7.

16.

High flexibility of DNA on short length scales probed by atomic force microscopy.

Wiggins PA, van der Heijden T, Moreno-Herrero F, Spakowitz A, Phillips R, Widom J, Dekker C, Nelson PC.

Nat Nanotechnol. 2006 Nov;1(2):137-41. doi: 10.1038/nnano.2006.63. Epub 2006 Nov 3.

PMID:
18654166
18.

On the significance of microtubule flexural behavior in cytoskeletal mechanics.

Mehrbod M, Mofrad MR.

PLoS One. 2011;6(10):e25627. doi: 10.1371/journal.pone.0025627. Epub 2011 Oct 5.

19.

A mechanochemical model of actin filaments.

Yogurtcu ON, Kim JS, Sun SX.

Biophys J. 2012 Aug 22;103(4):719-27. doi: 10.1016/j.bpj.2012.07.020. Erratum in: Biophys J. 2013 Feb 5;104(3):737-8.

20.

Twirling elastica: kinks, viscous drag, and torsional stress.

Koehler SA, Powers TR.

Phys Rev Lett. 2000 Nov 27;85(22):4827-30.

PMID:
11082662
Items per page

Supplemental Content

Write to the Help Desk