Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 117

Similar articles for PubMed (Select 24473636)

1.

DNA-directed growth of ultrafine CoAuPd nanoparticles on graphene as efficient catalysts for formic acid dehydrogenation.

Wang ZL, Wang HL, Yan JM, Ping Y, O SI, Li SJ, Jiang Q.

Chem Commun (Camb). 2014 Mar 14;50(21):2732-4. doi: 10.1039/c3cc49821b.

PMID:
24473636
2.

Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

Metin Ö, Sun X, Sun S.

Nanoscale. 2013 Feb 7;5(3):910-2. doi: 10.1039/c2nr33637e. Epub 2012 Dec 20.

PMID:
23254519
3.

An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature.

Wang ZL, Yan JM, Ping Y, Wang HL, Zheng WT, Jiang Q.

Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4406-9. doi: 10.1002/anie.201301009. Epub 2013 Mar 19. No abstract available.

PMID:
23512790
4.

Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction.

Qu K, Wu L, Ren J, Qu X.

ACS Appl Mater Interfaces. 2012 Sep 26;4(9):5001-9. Epub 2012 Sep 13.

PMID:
22973944
5.

Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid.

Jin T, Guo S, Zuo JL, Sun S.

Nanoscale. 2013 Jan 7;5(1):160-3. doi: 10.1039/c2nr33060a. Epub 2012 Nov 21.

PMID:
23172252
6.

Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage.

Xi P, Chen F, Xie G, Ma C, Liu H, Shao C, Wang J, Xu Z, Xu X, Zeng Z.

Nanoscale. 2012 Sep 21;4(18):5597-601. doi: 10.1039/c2nr31010d. Epub 2012 Jun 26.

PMID:
22732933
7.

Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature.

Wang ZL, Yan JM, Zhang YF, Ping Y, Wang HL, Jiang Q.

Nanoscale. 2014 Mar 21;6(6):3073-7. doi: 10.1039/c3nr05809c. Epub 2014 Feb 14.

PMID:
24526095
8.

Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature.

Qin YL, Wang J, Meng FZ, Wang LM, Zhang XB.

Chem Commun (Camb). 2013 Nov 4;49(85):10028-30. doi: 10.1039/c3cc46248j.

PMID:
24045900
9.

Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation.

He F, Niu N, Qu F, Wei S, Chen Y, Gai S, Gao P, Wang Y, Yang P.

Nanoscale. 2013 Sep 21;5(18):8507-16. doi: 10.1039/c3nr03038e.

PMID:
23892431
10.

Hydrogen production by dehydrogenation of formic acid on atomically dispersed gold on ceria.

Yi N, Saltsburg H, Flytzani-Stephanopoulos M.

ChemSusChem. 2013 May;6(5):816-9. doi: 10.1002/cssc.201200957. Epub 2013 Mar 26.

PMID:
23532971
11.

Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.

Wang L, Zhang B, Meng X, Su DS, Xiao FS.

ChemSusChem. 2014 Jun;7(6):1537-41. doi: 10.1002/cssc.201400039. Epub 2014 May 26.

PMID:
24861954
12.

Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: a surfactant free laser ablation approach.

Sai Siddhardha RS, Lakshman Kumar V, Kaniyoor A, Sai Muthukumar V, Ramaprabhu S, Podila R, Rao AM, Ramamurthy SS.

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Dec 10;133:365-71. doi: 10.1016/j.saa.2014.05.069. Epub 2014 Jun 4.

PMID:
24967542
13.

Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions.

Cano M, Benito AM, Urriolabeitia EP, Arenal R, Maser WK.

Nanoscale. 2013 Nov 7;5(21):10189-93. doi: 10.1039/c3nr02822d. Epub 2013 Sep 16.

PMID:
24056941
14.

Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation.

Yang S, Shen C, Liang Y, Tong H, He W, Shi X, Zhang X, Gao HJ.

Nanoscale. 2011 Aug;3(8):3277-84. doi: 10.1039/c1nr10371g. Epub 2011 Jun 28.

PMID:
21713273
15.

Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis.

Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z.

Nanoscale. 2010 Dec;2(12):2733-8. doi: 10.1039/c0nr00473a. Epub 2010 Oct 11.

PMID:
20936236
16.

Metal (Mn, Co, and Cu) oxide nanocrystals from simple formate precursors.

Sun X, Zhang YW, Si R, Yan CH.

Small. 2005 Nov;1(11):1081-6. No abstract available.

PMID:
17193400
17.

Protein-decorated reduced oxide graphene composite and its application to SERS.

Lu F, Zhang S, Gao H, Jia H, Zheng L.

ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3278-84. doi: 10.1021/am300634n. Epub 2012 Jun 14.

PMID:
22692825
18.

Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.

Kim SH, Jeong GH, Choi D, Yoon S, Jeon HB, Lee SM, Kim SW.

J Colloid Interface Sci. 2013 Jan 1;389(1):85-90. doi: 10.1016/j.jcis.2012.08.064. Epub 2012 Sep 18.

PMID:
23026300
19.

Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.

Wang Q, Wang Y, Guo P, Li Q, Ding R, Wang B, Li H, Liu J, Zhao XS.

Langmuir. 2014 Jan 14;30(1):440-6. doi: 10.1021/la404268j. Epub 2014 Jan 3.

PMID:
24369065
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk