Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 100

Similar articles for PubMed (Select 24464762)

1.

Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices.

Sun H, You X, Deng J, Chen X, Yang Z, Ren J, Peng H.

Adv Mater. 2014 May;26(18):2868-73. doi: 10.1002/adma.201305188. Epub 2014 Jan 25.

PMID:
24464762
2.

Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells.

Fang X, Yang Z, Qiu L, Sun H, Pan S, Deng J, Luo Y, Peng H.

Adv Mater. 2014 Mar 19;26(11):1694-8. doi: 10.1002/adma.201305241. Epub 2013 Dec 17.

PMID:
24347052
3.

Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.

Ma Y, Li P, Sedloff JW, Zhang X, Zhang H, Liu J.

ACS Nano. 2015 Feb 24;9(2):1352-9. doi: 10.1021/nn505412v. Epub 2015 Jan 29.

PMID:
25625807
4.

Photovoltaic wire derived from a graphene composite fiber achieving an 8.45‚ÄČ% energy conversion efficiency.

Yang Z, Sun H, Chen T, Qiu L, Luo Y, Peng H.

Angew Chem Int Ed Engl. 2013 Jul 15;52(29):7545-8. doi: 10.1002/anie.201301776. Epub 2013 May 28.

PMID:
23716484
5.

The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale.

Sun X, Chen T, Yang Z, Peng H.

Acc Chem Res. 2013 Feb 19;46(2):539-49. doi: 10.1021/ar300221r. Epub 2012 Nov 21.

PMID:
23170988
6.

Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.

Jin Y, Chen H, Chen M, Liu N, Li Q.

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3408-16. doi: 10.1021/am400457x. Epub 2013 Apr 5.

PMID:
23488813
7.

Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.

Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P.

Angew Chem Int Ed Engl. 2015 Apr 7;54(15):4651-6. doi: 10.1002/anie.201411533. Epub 2015 Feb 18.

PMID:
25694387
8.

Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors.

Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J.

Nano Lett. 2012 Aug 8;12(8):4206-11. doi: 10.1021/nl301804c. Epub 2012 Jul 26.

PMID:
22823066
9.

Integrating perovskite solar cells into a flexible fiber.

Qiu L, Deng J, Lu X, Yang Z, Peng H.

Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10425-8. doi: 10.1002/anie.201404973. Epub 2014 Jul 22.

PMID:
25047870
10.

Freestanding aligned carbon nanotube array grown on a large-area single-layered graphene sheet for efficient dye-sensitized solar cell.

Qiu L, Wu Q, Yang Z, Sun X, Zhang Y, Peng H.

Small. 2015 Mar;11(9-10):1150-5. doi: 10.1002/smll.201400703. Epub 2014 May 30.

PMID:
24889384
11.

Carbon nanotube fibers for electrochemical applications: effect of enhanced interfaces by an acid treatment.

Meng F, Zhao J, Ye Y, Zhang X, Li Q.

Nanoscale. 2012 Dec 7;4(23):7464-8. doi: 10.1039/c2nr32332j.

PMID:
23093201
12.

Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber.

Ren J, Bai W, Guan G, Zhang Y, Peng H.

Adv Mater. 2013 Nov 6;25(41):5965-70. doi: 10.1002/adma.201302498. Epub 2013 Aug 16.

PMID:
23956005
13.

Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.

Cheng H, Dong Z, Hu C, Zhao Y, Hu Y, Qu L, Chen N, Dai L.

Nanoscale. 2013 Apr 21;5(8):3428-34. doi: 10.1039/c3nr00320e. Epub 2013 Mar 8.

PMID:
23475309
14.

Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.

Wu Q, Xu Y, Yao Z, Liu A, Shi G.

ACS Nano. 2010 Apr 27;4(4):1963-70. doi: 10.1021/nn1000035.

PMID:
20355733
15.

Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.

Wang G, Sun X, Lu F, Sun H, Yu M, Jiang W, Liu C, Lian J.

Small. 2012 Feb 6;8(3):452-9. doi: 10.1002/smll.201101719. Epub 2011 Dec 8.

PMID:
22162371
16.

Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers.

Xu P, Wei B, Cao Z, Zheng J, Gong K, Li F, Yu J, Li Q, Lu W, Byun JH, Kim BS, Yan Y, Chou TW.

ACS Nano. 2015 Jun 23;9(6):6088-96. doi: 10.1021/acsnano.5b01244. Epub 2015 May 15.

PMID:
25961131
17.

Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.

Jung N, Kwon S, Lee D, Yoon DM, Park YM, Benayad A, Choi JY, Park JS.

Adv Mater. 2013 Dec 17;25(47):6854-8. doi: 10.1002/adma.201302788. Epub 2013 Sep 19.

PMID:
24105733
18.

Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing.

Zhong XH, Wang R, Wen YY.

Phys Chem Chem Phys. 2013 Mar 21;15(11):3861-5. doi: 10.1039/c3cp44085k.

PMID:
23399977
19.

Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping.

Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z.

Nano Lett. 2011 Oct 12;11(10):4438-42. doi: 10.1021/nl2026635. Epub 2011 Sep 28.

PMID:
21942427
20.

Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells.

Velten J, Mozer AJ, Li D, Officer D, Wallace G, Baughman R, Zakhidov A.

Nanotechnology. 2012 Mar 2;23(8):085201. doi: 10.1088/0957-4484/23/8/085201. Epub 2012 Feb 1.

PMID:
22293392
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk