Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 122

Related Citations for PubMed (Select 24464367)

1.

Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses.

Lu YT, Li MY, Cheng KT, Tan CM, Su LW, Lin WY, Shih HT, Chiou TJ, Yang JY.

Plant Physiol. 2014 Mar;164(3):1456-69. doi: 10.1104/pp.113.229740. Epub 2014 Jan 24.

2.

Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis.

Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA.

Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):E1254-63. doi: 10.1073/pnas.1105664108. Epub 2011 Nov 7.

3.

Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA.

Plant Physiol. 2011 Oct;157(2):831-41. doi: 10.1104/pp.111.181586. Epub 2011 Aug 17.

4.

Post-translational cleavage and self-interaction of the phytoplasma effector SAP11.

Lu YT, Cheng KT, Jiang SY, Yang JY.

Plant Signal Behav. 2014 Apr 28;9. pii: e28991. [Epub ahead of print]

PMID:
24776784
5.

The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization.

Sugio A, MacLean AM, Hogenhout SA.

New Phytol. 2014 May;202(3):838-48. doi: 10.1111/nph.12721. Epub 2014 Feb 19.

6.

Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores.

Aznar A, Chen NW, Rigault M, Riache N, Joseph D, Desmaële D, Mouille G, Boutet S, Soubigou-Taconnat L, Renou JP, Thomine S, Expert D, Dellagi A.

Plant Physiol. 2014 Apr;164(4):2167-83. doi: 10.1104/pp.113.233585. Epub 2014 Feb 5.

PMID:
24501001
7.

AY-WB phytoplasma secretes a protein that targets plant cell nuclei.

Bai X, Correa VR, Toruño TY, Ammar el-D, Kamoun S, Hogenhout SA.

Mol Plant Microbe Interact. 2009 Jan;22(1):18-30. doi: 10.1094/MPMI-22-1-0018.

8.

Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000.

Xiao S, Chye ML.

Plant Physiol. 2011 Aug;156(4):2069-81. doi: 10.1104/pp.111.176933. Epub 2011 Jun 13.

9.

Diverse targets of phytoplasma effectors: from plant development to defense against insects.

Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA.

Annu Rev Phytopathol. 2011;49:175-95. doi: 10.1146/annurev-phyto-072910-095323. Review.

PMID:
21838574
10.

A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium.

Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S.

Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6416-21. doi: 10.1073/pnas.0813038106. Epub 2009 Mar 27.

11.

Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses.

Mutka AM, Fawley S, Tsao T, Kunkel BN.

Plant J. 2013 Jun;74(5):746-54. doi: 10.1111/tpj.12157. Epub 2013 Mar 25.

PMID:
23521356
12.

Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB.

Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, Day B.

Plant Physiol. 2009 Jun;150(2):815-24. doi: 10.1104/pp.109.137604. Epub 2009 Apr 3.

13.

Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid.

Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, Baillieul F, Dorey S.

Plant Physiol. 2012 Nov;160(3):1630-41. doi: 10.1104/pp.112.201913. Epub 2012 Sep 11.

14.
15.

Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway.

Eshraghi L, Anderson JP, Aryamanesh N, McComb JA, Shearer B, Hardy GS.

BMC Plant Biol. 2014 Mar 20;14:68. doi: 10.1186/1471-2229-14-68.

16.

Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae.

Hu Y, Dong Q, Yu D.

Plant Sci. 2012 Apr;185-186:288-97. doi: 10.1016/j.plantsci.2011.12.003. Epub 2011 Dec 9.

PMID:
22325892
17.
18.

'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects.

IRPCM Phytoplasma/Spiroplasma Working Team--Phytoplasma Taxonomy Group.

Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1243-55.

19.

The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen.

Degrave A, Moreau M, Launay A, Barny MA, Brisset MN, Patrit O, Taconnat L, Vedel R, Fagard M.

Mol Plant Pathol. 2013 Jun;14(5):506-17. doi: 10.1111/mpp.12022. Epub 2013 Mar 12.

PMID:
23634775
20.

Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense.

Jeong HJ, Kim YJ, Kim SH, Kim YH, Lee IJ, Kim YK, Shin JS.

Plant Cell Physiol. 2011 Dec;52(12):2147-56. doi: 10.1093/pcp/pcr144. Epub 2011 Oct 24.

PMID:
22025558
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk