Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 103

Similar articles for PubMed (Select 24462206)

1.

Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism.

Lavery LA, Partridge JR, Ramelot TA, Elnatan D, Kennedy MA, Agard DA.

Mol Cell. 2014 Jan 23;53(2):330-43. doi: 10.1016/j.molcel.2013.12.023.

2.

Hurt, tired and queasy: Specific variants in the ATPase domain of the TRAP1 mitochondrial chaperone are associated with common, chronic "functional" symptomatology including pain, fatigue and gastrointestinal dysmotility.

Boles RG, Hornung HA, Moody AE, Ortiz TB, Wong SA, Eggington JM, Stanley CM, Gao M, Zhou H, McLaughlin S, Zare AS, Sheldon KM, Skolnick J, McKernan KJ.

Mitochondrion. 2015 May 25. pii: S1567-7249(15)30001-5. doi: 10.1016/j.mito.2015.05.002. [Epub ahead of print]

PMID:
26022780
3.

Mechanistic Asymmetry in Hsp90 Dimers.

Flynn JM, Mishra P, Bolon DN.

J Mol Biol. 2015 Apr 3. pii: S0022-2836(15)00202-8. doi: 10.1016/j.jmb.2015.03.017. [Epub ahead of print] Review.

PMID:
25843003
4.

Development of a mitochondria-targeted Hsp90 inhibitor based on the crystal structures of human TRAP1.

Lee C, Park HK, Jeong H, Lim J, Lee AJ, Cheon KY, Kim CS, Thomas AP, Bae B, Kim ND, Kim SH, Suh PG, Ryu JH, Kang BH.

J Am Chem Soc. 2015 Apr 8;137(13):4358-67. doi: 10.1021/ja511893n. Epub 2015 Mar 30.

PMID:
25785725
5.

The diverse lives of TRAP1.

Agorreta J, Hu J, Pezzella F.

Oncoscience. 2014 Sep 22;1(9):560-1. eCollection 2014. No abstract available.

6.

A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity.

Partridge JR, Lavery LA, Elnatan D, Naber N, Cooke R, Agard DA.

Elife. 2014 Dec 22;3. doi: 10.7554/eLife.03487.

7.

ATPase activity and ATP-dependent conformational change in the co-chaperone HSP70/HSP90-organizing protein (HOP).

Yamamoto S, Subedi GP, Hanashima S, Satoh T, Otaka M, Wakui H, Sawada K, Yokota S, Yamaguchi Y, Kubota H, Itoh H.

J Biol Chem. 2014 Apr 4;289(14):9880-6. doi: 10.1074/jbc.M114.553255. Epub 2014 Feb 17.

8.

Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor.

Zeymer C, Barends TR, Werbeck ND, Schlichting I, Reinstein J.

Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):582-95. doi: 10.1107/S1399004713030629. Epub 2014 Jan 31.

9.

Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography.

Round A, Brown E, Marcellin R, Kapp U, Westfall CS, Jez JM, Zubieta C.

Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2072-80. doi: 10.1107/S0907444913019276. Epub 2013 Sep 20.

PMID:
24100325
10.

Mycobacterium tuberculosis DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion.

Agrawal A, Roué M, Spitzfaden C, Petrella S, Aubry A, Hann M, Bax B, Mayer C.

Biochem J. 2013 Dec 1;456(2):263-73. doi: 10.1042/BJ20130538.

PMID:
24015710
11.

Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution.

Fei X, Yang D, LaRonde-LeBlanc N, Lorimer GH.

Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):E2958-66. doi: 10.1073/pnas.1311996110. Epub 2013 Jul 16.

12.

Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation.

Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W.

Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9. doi: 10.1073/pnas.1305782110. Epub 2013 Apr 15.

13.

Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease.

Costa AC, Loh SH, Martins LM.

Cell Death Dis. 2013 Jan 17;4:e467. doi: 10.1038/cddis.2012.205.

14.

Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones.

Kityk R, Kopp J, Sinning I, Mayer MP.

Mol Cell. 2012 Dec 28;48(6):863-74. doi: 10.1016/j.molcel.2012.09.023. Epub 2012 Nov 1.

15.

Structure of yeast sulfhydryl oxidase erv1 reveals electron transfer of the disulfide relay system in the mitochondrial intermembrane space.

Guo PC, Ma JD, Jiang YL, Wang SJ, Bao ZZ, Yu XJ, Chen Y, Zhou CZ.

J Biol Chem. 2012 Oct 12;287(42):34961-9. doi: 10.1074/jbc.M112.394759. Epub 2012 Aug 21.

16.

Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria.

Rees DM, Montgomery MG, Leslie AG, Walker JE.

Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11139-43. doi: 10.1073/pnas.1207587109. Epub 2012 Jun 25.

17.

Get1 stabilizes an open dimer conformation of get3 ATPase by binding two distinct interfaces.

Kubota K, Yamagata A, Sato Y, Goto-Ito S, Fukai S.

J Mol Biol. 2012 Sep 21;422(3):366-75. doi: 10.1016/j.jmb.2012.05.045. Epub 2012 Jun 7.

PMID:
22684149
18.

Conformations of the apo-, substrate-bound and phosphate-bound ATP-binding domain of the Cu(II) ATPase CopB illustrate coupling of domain movement to the catalytic cycle.

Jayakanthan S, Roberts SA, Weichsel A, Argüello JM, McEvoy MM.

Biosci Rep. 2012 Oct;32(5):443-53. doi: 10.1042/BSR20120048.

19.

The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis.

Cunningham CN, Southworth DR, Krukenberg KA, Agard DA.

Protein Sci. 2012 Aug;21(8):1162-71. doi: 10.1002/pro.2103.

20.

Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies.

Byeon IJ, Hou G, Han Y, Suiter CL, Ahn J, Jung J, Byeon CH, Gronenborn AM, Polenova T.

J Am Chem Soc. 2012 Apr 11;134(14):6455-66. doi: 10.1021/ja300937v. Epub 2012 Apr 2.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk