Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113


Down-regulation of acetolactate synthase compromises Ol-1- mediated resistance to powdery mildew in tomato.

Gao D, Huibers RP, Loonen AE, Visser RG, Wolters AM, Bai Y.

BMC Plant Biol. 2014 Jan 17;14:32. doi: 10.1186/1471-2229-14-32.


Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2.

Bai Y, van der Hulst R, Bonnema G, Marcel TC, Meijer-Dekens F, Niks RE, Lindhout P.

Mol Plant Microbe Interact. 2005 Apr;18(4):354-62. Erratum in: Mol Plant Microbe Interact. 2005 May;18(5):508.


Characterization of polygenic resistance to powdery mildew in tomato at cytological, biochemical and gene expression level.

Li C, Faino L, Dong L, Fan J, Kiss L, De Giovanni C, Lebeda A, Scott J, Matsuda Y, Toyoda H, Lindhout P, Visser RG, Bonnema G, Bai Y.

Mol Plant Pathol. 2012 Feb;13(2):148-59. doi: 10.1111/j.1364-3703.2011.00737.x. Epub 2011 Aug 22.


Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of mlo function.

Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R.

Mol Plant Microbe Interact. 2008 Jan;21(1):30-9.


Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica.

Zheng Z, Nonomura T, Appiano M, Pavan S, Matsuda Y, Toyoda H, Wolters AM, Visser RG, Bai Y.

PLoS One. 2013 Jul 29;8(7):e70723. doi: 10.1371/journal.pone.0070723. Print 2013.


Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes.

Seifi A, Kaloshian I, Vossen J, Che D, Bhattarai KK, Fan J, Naher Z, Goverse A, Tjallingii WF, Lindhout P, Visser RG, Bai Y.

Mol Plant Microbe Interact. 2011 Apr;24(4):441-50. doi: 10.1094/MPMI-06-10-0145.


Biochemical and molecular mechanisms involved in monogenic resistance responses to tomato powdery mildew.

Li C, Bonnema G, Che D, Dong L, Lindhout P, Visser R, Bai Y.

Mol Plant Microbe Interact. 2007 Sep;20(9):1161-72.


Polymorphic change of appressoria by the tomato powdery mildew Oidium neolycopersici on host tomato leaves reflects multiple unsuccessful penetration attempts.

Nonomura T, Nishitomi A, Matsuda Y, Soma C, Xu L, Kakutani K, Takikawa Y, Toyoda H.

Fungal Biol. 2010 Nov-Dec;114(11-12):917-28. doi: 10.1016/j.funbio.2010.08.008. Epub 2010 Sep 17.


QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes.

Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P.

Mol Plant Microbe Interact. 2003 Feb;16(2):169-76.


Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: evidence for close linkage of two Ol-genes on chromosome 6 of tomato.

Huang CC, Hoefs-Van De Putte PM, Haanstra-Van Der Meer JG, Meijer-Dekens F, Lindhout P.

Heredity (Edinb). 2000 Dec;85(Pt 6):511-20.


Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1.

Huibers RP, Loonen AE, Gao D, Van den Ackerveken G, Visser RG, Bai Y.

PLoS One. 2013 Jun 20;8(6):e67467. doi: 10.1371/journal.pone.0067467. Print 2013.


An avirulent tomato powdery mildew isolate induces localized acquired resistance to a virulent isolate in a spatiotemporal manner.

Seifi A, Nonomura T, Matsuda Y, Toyoda H, Bai Y.

Mol Plant Microbe Interact. 2012 Mar;25(3):372-8. doi: 10.1094/MPMI-06-11-0171.


Oidium neolycopersici: intraspecific variability inferred from amplified fragment length polymorphism analysis and relationship with closely related powdery mildew fungi infecting various plant species.

Jankovics T, Bai Y, Kovács GM, Bardin M, Nicot PC, Toyoda H, Matsuda Y, Niks RE, Kiss L.

Phytopathology. 2008 May;98(5):529-40. doi: 10.1094/PHYTO-98-5-0529.


Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean.

Walter KL, Strachan SD, Ferry NM, Albert HH, Castle LA, Sebastian SA.

Pest Manag Sci. 2014 Dec;70(12):1831-9. doi: 10.1002/ps.3725. Epub 2014 Mar 6.


Natural loss-of-function mutation of EDR1 conferring resistance to tomato powdery mildew in Arabidopsis thaliana accession C24.

Gao D, Appiano M, Huibers RP, Loonen AE, Visser RG, Wolters AM, Bai Y.

Mol Plant Pathol. 2015 Jan;16(1):71-82. doi: 10.1111/mpp.12165. Epub 2014 Jul 9.


Gene profiling in partially resistant and susceptible near-isogenic tomatoes in response to late blight in the field.

Cai G, Restrepo S, Myers K, Zuluaga P, Danies G, Smart C, Fry W.

Mol Plant Pathol. 2013 Feb;14(2):171-84. doi: 10.1111/j.1364-3703.2012.00841.x. Epub 2012 Nov 6.


Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing.

Li C, Bai Y, Jacobsen E, Visser R, Lindhout P, Bonnema G.

Plant Mol Biol. 2006 Sep;62(1-2):127-40. Epub 2006 Aug 10.


Characterization of sulfonylurea-resistant Schoenoplectus juncoides having a target-site Asp(376)Glu mutation in the acetolactate synthase.

Sada Y, Ikeda H, Yamato S, Kizawa S.

Pestic Biochem Physiol. 2013 Sep;107(1):106-11. doi: 10.1016/j.pestbp.2013.05.013. Epub 2013 Jun 1.


Potential of induced resistance to control Oidium lycopersici on tomato and tobacco.

Achuo AE, Hofte M.

Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2001;66(2a):195-203.


Conditions for development of powdery mildew of tomato caused by Oidium neolycopersici.

Jacob D, David DR, Sztjenberg A, Elad Y.

Phytopathology. 2008 Mar;98(3):270-81. doi: 10.1094/PHYTO-98-3-0270.

Items per page

Supplemental Content

Write to the Help Desk