Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 100

Similar articles for PubMed (Select 24400317)

1.

H2O2-dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin.

Okamoto Y, Onoda A, Sugimoto H, Takano Y, Hirota S, Kurtz DM Jr, Shiro Y, Hayashi T.

Chem Commun (Camb). 2014 Apr 4;50(26):3421-3. doi: 10.1039/c3cc48108e. Epub 2014 Jan 8.

2.

Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin.

Okamoto Y, Onoda A, Sugimoto H, Takano Y, Hirota S, Kurtz DM Jr, Shiro Y, Hayashi T.

Inorg Chem. 2013 Nov 18;52(22):13014-20. doi: 10.1021/ic401632x. Epub 2013 Nov 4.

3.

X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase.

Jin S, Kurtz DM Jr, Liu ZJ, Rose J, Wang BC.

J Am Chem Soc. 2002 Aug 21;124(33):9845-55.

PMID:
12175244
4.

Structural basis for O2 sensing by the hemerythrin-like domain of a bacterial chemotaxis protein: substrate tunnel and fluxional N terminus.

Isaza CE, Silaghi-Dumitrescu R, Iyer RB, Kurtz DM Jr, Chan MK.

Biochemistry. 2006 Aug 1;45(30):9023-31.

PMID:
16866347
5.

Synthesis and spectroscopic studies of non-heme diiron(III) species with a terminal hydroperoxide ligand: models for hemerythrin.

Mizoguchi TJ, Kuzelka J, Spingler B, DuBois JL, Davydov RM, Hedman B, Hodgson KO, Lippard SJ.

Inorg Chem. 2001 Aug 27;40(18):4662-73.

PMID:
11511213
6.

A hemerythrin-like domain in a bacterial chemotaxis protein.

Xiong J, Kurtz DM Jr, Ai J, Sanders-Loehr J.

Biochemistry. 2000 May 2;39(17):5117-25.

PMID:
10819979
7.

High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins.

Iyer RB, Silaghi-Dumitrescu R, Kurtz DM Jr, Lanzilotta WN.

J Biol Inorg Chem. 2005 Jun;10(4):407-16. Epub 2005 May 14. Erratum in: J Biol Inorg Chem. 2005 Aug;10(5):592.

PMID:
15895271
8.
9.

Mechanistic studies on oxidation of hydrogen peroxide by an oxo-bridged diiron complex in aqueous acidic media.

Das S, Bhattacharyya J, Mukhopadhyay S.

Dalton Trans. 2008 Dec 14;(46):6634-40. doi: 10.1039/b810011j. Epub 2008 Oct 14.

PMID:
19030627
10.

A cryo-crystallographic time course for peroxide reduction by rubrerythrin from Pyrococcus furiosus.

Dillard BD, Demick JM, Adams MW, Lanzilotta WN.

J Biol Inorg Chem. 2011 Aug;16(6):949-59. doi: 10.1007/s00775-011-0795-6. Epub 2011 Jun 7.

PMID:
21647777
11.

Conversion of non-functional to functional iron following reconstitution of hemerythrin.

Zhang JH, Kurtz DM Jr, Xia YM, Debrunner PG.

Biochim Biophys Acta. 1992 Aug 21;1122(3):293-8.

PMID:
1504090
12.

A novel diiron complex as a functional model for hemerythrin.

Arii H, Nagatomo S, Kitagawa T, Miwa T, Jitsukawa K, Einaga H, Masuda H.

J Inorg Biochem. 2000 Nov;82(1-4):153-62.

PMID:
11132622
13.

Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.

Kurtz DM Jr.

J Inorg Biochem. 2006 Apr;100(4):679-93. Epub 2006 Feb 28. Review.

PMID:
16504301
14.

Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states.

Rosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ.

Chem Biol. 1995 Sep;2(9):409-18.

PMID:
9432288
15.

Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states.

Rosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ.

Chem Biol. 1995 Jun;2(6):409-18. Corrected and republished in: Chem Biol. 1995 Sep;2(9):409-18.

PMID:
9383443
16.

Reactivity patterns for redox reactions of monomer forms of myoglobin, hemocyanin and hemerythrin.

Zhang BJ, Andrew CR, Tomkinson NP, Sykes AG.

Biochim Biophys Acta. 1992 Sep 25;1102(2):245-52.

PMID:
1390826
17.

Dioxygen activation at non-heme diiron centers: oxidation of a proximal residue in the I100W variant of toluene/o-xylene monooxygenase hydroxylase.

Murray LJ, GarcĂ­a-Serres R, McCormick MS, Davydov R, Naik SG, Kim SH, Hoffman BM, Huynh BH, Lippard SJ.

Biochemistry. 2007 Dec 25;46(51):14795-809. Epub 2007 Nov 29.

18.

NADH peroxidase activity of rubrerythrin.

Coulter ED, Shenvi NV, Kurtz DM Jr.

Biochem Biophys Res Commun. 1999 Feb 16;255(2):317-23.

PMID:
10049706
19.

Hydroxylation of C-H bonds at carboxylate-bridged diiron centres.

Lippard SJ.

Philos Trans A Math Phys Eng Sci. 2005 Apr 15;363(1829):861-77; discussion 1035-40. Review.

PMID:
15901540
20.

Reversible dioxygen binding to hemerythrin.

Wirstam M, Lippard SJ, Friesner RA.

J Am Chem Soc. 2003 Apr 2;125(13):3980-7.

PMID:
12656634
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk