Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Characterization of a novel transgenic mouse tumor model for targeting HER2+ cancer stem cells.

Wang SH, Lu L, Fan Y, Wicha MS, Cao Z, Chang AE, Xia JC, Baker JR Jr, Li Q.

Int J Biol Sci. 2013 Dec 6;10(1):25-32. doi: 10.7150/ijbs.6309. eCollection 2013.

2.

A novel oncogenic role of inositol phosphatase SHIP2 in ER-negative breast cancer stem cells: involvement of JNK/vimentin activation.

Fu CH, Lin RJ, Yu J, Chang WW, Liao GS, Chang WY, Tseng LM, Tsai YF, Yu JC, Yu AL.

Stem Cells. 2014 Aug;32(8):2048-60. doi: 10.1002/stem.1735.

3.

HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells.

Duru N, Fan M, Candas D, Menaa C, Liu HC, Nantajit D, Wen Y, Xiao K, Eldridge A, Chromy BA, Li S, Spitz DR, Lam KS, Wicha MS, Li JJ.

Clin Cancer Res. 2012 Dec 15;18(24):6634-47. doi: 10.1158/1078-0432.CCR-12-1436. Epub 2012 Oct 22.

4.

Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB.

Wei L, Liu TT, Wang HH, Hong HM, Yu AL, Feng HP, Chang WW.

Breast Cancer Res. 2011 Oct 24;13(5):R101. doi: 10.1186/bcr3042.

5.

CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFβ signaling.

Lo PK, Kanojia D, Liu X, Singh UP, Berger FG, Wang Q, Chen H.

Oncogene. 2012 May 24;31(21):2614-26. doi: 10.1038/onc.2011.439. Epub 2011 Sep 26.

6.

HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion.

Korkaya H, Paulson A, Iovino F, Wicha MS.

Oncogene. 2008 Oct 16;27(47):6120-30. doi: 10.1038/onc.2008.207. Epub 2008 Jun 30.

7.

Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression.

Vlashi E, Lagadec C, Chan M, Frohnen P, McDonald AJ, Pajonk F.

Breast Cancer Res Treat. 2013 Sep;141(2):197-203. doi: 10.1007/s10549-013-2688-6. Epub 2013 Sep 8.

8.

High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability.

Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL.

J Cell Mol Med. 2009 Aug;13(8B):2236-52. doi: 10.1111/j.1582-4934.2008.00455.x. Epub 2008 Aug 4.

9.

Neuregulin autocrine signaling promotes self-renewal of breast tumor-initiating cells by triggering HER2/HER3 activation.

Lee CY, Lin Y, Bratman SV, Feng W, Kuo AH, Scheeren FA, Engreitz JM, Varma S, West RB, Diehn M.

Cancer Res. 2014 Jan 1;74(1):341-52. doi: 10.1158/0008-5472.CAN-13-1055. Epub 2013 Oct 31.

10.

Dietary chemopreventative benzyl isothiocyanate inhibits breast cancer stem cells in vitro and in vivo.

Kim SH, Sehrawat A, Singh SV.

Cancer Prev Res (Phila). 2013 Aug;6(8):782-90. doi: 10.1158/1940-6207.CAPR-13-0100. Epub 2013 May 9.

11.

Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy.

Pham PV, Phan NL, Nguyen NT, Truong NH, Duong TT, Le DV, Truong KD, Phan NK.

J Transl Med. 2011 Dec 7;9:209. doi: 10.1186/1479-5876-9-209.

12.

Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer.

Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AM, Girgis-Gabardo A, Ilieva D, Hassell JA.

PLoS One. 2012;7(3):e33976. doi: 10.1371/journal.pone.0033976. Epub 2012 Mar 28.

13.

Suppression of apoptosis inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anti-cancer agent, TRAIL.

Piggott L, Omidvar N, Martí Pérez S, French R, Eberl M, Clarkson RW.

Breast Cancer Res. 2011 Sep 14;13(5):R88. doi: 10.1186/bcr2945. Erratum in: Breast Cancer Res. 2015;17:96. French, Rhiannon [added].

14.

HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab.

Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, Quraishi AA, Ignatoski KW, Daignault S, Davis A, Hall CL, Palanisamy N, Heath AN, Tawakkol N, Luther TK, Clouthier SG, Chadwick WA, Day ML, Kleer CG, Thomas DG, Hayes DF, Korkaya H, Wicha MS.

Cancer Res. 2013 Mar 1;73(5):1635-46. doi: 10.1158/0008-5472.CAN-12-3349. Epub 2013 Feb 26.

15.

In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors.

Barbieri F, Thellung S, Ratto A, Carra E, Marini V, Fucile C, Bajetto A, Pattarozzi A, Würth R, Gatti M, Campanella C, Vito G, Mattioli F, Pagano A, Daga A, Ferrari A, Florio T.

BMC Cancer. 2015 Apr 7;15:228. doi: 10.1186/s12885-015-1235-8.

16.

Determining duration of HER2-targeted therapy using stem cell extinction models.

Riley L, Zhou H, Lange K, Sinsheimer JS, Sehl ME.

PLoS One. 2012;7(12):e46613. doi: 10.1371/journal.pone.0046613. Epub 2012 Dec 28.

17.

NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro.

Simmons MJ, Serra R, Hermance N, Kelliher MA.

Breast Cancer Res. 2012 Sep 19;14(5):R126. doi: 10.1186/bcr3321.

18.

Modeling of Cancer Stem Cell State Transitions Predicts Therapeutic Response.

Sehl ME, Shimada M, Landeros A, Lange K, Wicha MS.

PLoS One. 2015 Sep 23;10(9):e0135797. doi: 10.1371/journal.pone.0135797. eCollection 2015.

19.

Epidermal growth factor/heat shock protein 27 pathway regulates vasculogenic mimicry activity of breast cancer stem/progenitor cells.

Lee CH, Wu YT, Hsieh HC, Yu Y, Yu AL, Chang WW.

Biochimie. 2014 Sep;104:117-26. doi: 10.1016/j.biochi.2014.06.011. Epub 2014 Jun 17.

PMID:
24950183
20.

Rassf3 is responsible in part for resistance to mammary tumor development in neu transgenic mice.

Jacquemart IC, Springs AE, Chen WY.

Int J Oncol. 2009 Feb;34(2):517-28.

PMID:
19148488
Items per page

Supplemental Content

Write to the Help Desk