Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 87

Similar articles for PubMed (Select 24375950)

1.

Altering the self-organization of dyes on titania with dyeing solvents to tune the charge-transfer dynamics of sensitized solar cells.

Wang Y, Yang L, Zhang J, Li R, Zhang M, Wang P.

Chemphyschem. 2014 Apr 14;15(6):1037-42. doi: 10.1002/cphc.201301006. Epub 2013 Dec 20.

PMID:
24375950
2.

Functional assessment for predicting charge-transfer excitations of dyes in complexed state: a study of triphenylamine-donor dyes on titania for dye-sensitized solar cells.

Dev P, Agrawal S, English NJ.

J Phys Chem A. 2013 Mar 14;117(10):2114-24. doi: 10.1021/jp306153e. Epub 2013 Mar 5.

PMID:
23237270
3.

Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells.

Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Momose H, Hayase S.

Chemphyschem. 2014 Apr 14;15(6):1062-9. doi: 10.1002/cphc.201301153. Epub 2014 Mar 6.

PMID:
24604610
4.

Femtosecond to millisecond studies of electron transfer processes in a donor-(π-spacer)-acceptor series of organic dyes for solar cells interacting with titania nanoparticles and ordered nanotube array films.

Ziółek M, Cohen B, Yang X, Sun L, Paulose M, Varghese OK, Grimes CA, Douhal A.

Phys Chem Chem Phys. 2012 Feb 28;14(8):2816-31. doi: 10.1039/c2cp23825j. Epub 2012 Jan 19.

PMID:
22258566
5.

Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.

Hardin BE, Sellinger A, Moehl T, Humphry-Baker R, Moser JE, Wang P, Zakeeruddin SM, Grätzel M, McGehee MD.

J Am Chem Soc. 2011 Jul 13;133(27):10662-7. doi: 10.1021/ja2042172. Epub 2011 Jun 14.

PMID:
21619039
6.

Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

Imahori H, Umeyama T, Ito S.

Acc Chem Res. 2009 Nov 17;42(11):1809-18. doi: 10.1021/ar900034t.

PMID:
19408942
7.

Improvement of dye-sensitized solar cells' performance through introducing suitable heterocyclic groups to triarylamine dyes.

Zhang MD, Pan H, Ju XH, Ji YJ, Qin L, Zheng HG, Zhou XF.

Phys Chem Chem Phys. 2012 Feb 28;14(8):2809-15. doi: 10.1039/c2cp23876d. Epub 2012 Jan 23.

PMID:
22270905
8.

Photovoltaic properties of dye-sensitized solar cells associated with amphiphilic structure of ruthenium complex dyes.

Liu KY, Hsu CL, Ni JS, Ho KC, Lin KF.

J Colloid Interface Sci. 2012 Apr 15;372(1):73-9. doi: 10.1016/j.jcis.2012.01.004. Epub 2012 Jan 18.

PMID:
22331035
9.

Molecular scale characterization of the titania-dye-solvent interface in dye-sensitized solar cells.

Marquet P, Andersson G, Snedden A, Kloo L, Atkin R.

Langmuir. 2010 Jun 15;26(12):9612-6. doi: 10.1021/la100193w.

PMID:
20297833
10.

Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.

Bai Y, Zhang J, Wang Y, Zhang M, Wang P.

Langmuir. 2011 Apr 19;27(8):4749-55. doi: 10.1021/la200156m. Epub 2011 Mar 25.

PMID:
21438523
11.

Visible light water splitting using dye-sensitized oxide semiconductors.

Youngblood WJ, Lee SH, Maeda K, Mallouk TE.

Acc Chem Res. 2009 Dec 21;42(12):1966-73. doi: 10.1021/ar9002398.

PMID:
19905000
12.

Influence of solvent and bridge structure in alkylthio-substituted triphenylamine dyes on the photovoltaic properties of dye-sensitized solar cells.

Sakong C, Kim SH, Yuk SB, Namgoong JW, Park SW, Ko MJ, Kim DH, Hong KS, Kim JP.

Chem Asian J. 2012 Aug;7(8):1817-26. doi: 10.1002/asia.201100814. Epub 2012 May 23.

PMID:
22623408
13.

Exciton diffusion controlled quantum efficiency in hybrid dye sensitized solar cells.

Sun Z, Cheng Y, Lechmann M, Li J, Li J, Wu J, Grimsdale A, Müllen K, Butt HJ, Gutmann JS.

Phys Chem Chem Phys. 2009 Mar 14;11(10):1604-9. doi: 10.1039/b812217b. Epub 2009 Jan 26.

PMID:
19240938
14.

Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells.

Hao F, Jiao X, Li J, Lin H.

Nanoscale. 2013 Jan 21;5(2):726-33. doi: 10.1039/c2nr32946h. Epub 2012 Dec 10.

PMID:
23223876
15.

Molecular dynamics simulations on the aggregation behavior of indole type organic dye molecules in dye-sensitized solar cells.

Selvaraj AR, Hayase S.

J Mol Model. 2012 May;18(5):2099-104. doi: 10.1007/s00894-011-1230-1. Epub 2011 Sep 9.

PMID:
21904812
16.

Role of the triiodide/iodide redox couple in dye regeneration in p-type dye-sensitized solar cells.

Gibson EA, Le Pleux L, Fortage J, Pellegrin Y, Blart E, Odobel F, Hagfeldt A, Boschloo G.

Langmuir. 2012 Apr 17;28(15):6485-93. doi: 10.1021/la300215q. Epub 2012 Apr 6.

PMID:
22432412
17.

Organic dyes containing a coplanar indacenodithiophene bridge for high-performance dye-sensitized solar cells.

Chen JH, Tsai CH, Wang SA, Lin YY, Huang TW, Chiu SF, Wu CC, Wong KT.

J Org Chem. 2011 Nov 4;76(21):8977-85. doi: 10.1021/jo201730a. Epub 2011 Oct 10.

PMID:
21970376
18.

High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells.

Mor GK, Basham J, Paulose M, Kim S, Varghese OK, Vaish A, Yoriya S, Grimes CA.

Nano Lett. 2010 Jul 14;10(7):2387-94. doi: 10.1021/nl100415q.

PMID:
20568825
19.

Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.

Anselmi C, Mosconi E, Pastore M, Ronca E, De Angelis F.

Phys Chem Chem Phys. 2012 Dec 14;14(46):15963-74. doi: 10.1039/c2cp43006a.

PMID:
23108504
20.

The influence of charge transport and recombination on the performance of dye-sensitized solar cells.

Wang M, Chen P, Humphry-Baker R, Zakeeruddin SM, Grätzel M.

Chemphyschem. 2009 Jan 12;10(1):290-9. doi: 10.1002/cphc.200800708.

PMID:
19115326
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk