Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 152

Similar articles for PubMed (Select 24367294)

1.

Delivery of continuously-varying stimuli using channelrhodopsin-2.

Tchumatchenko T, Newman JP, Fong MF, Potter SM.

Front Neural Circuits. 2013 Dec 6;7:184. doi: 10.3389/fncir.2013.00184. eCollection 2013.

2.

Achieving high-frequency optical control of synaptic transmission.

Jackman SL, Beneduce BM, Drew IR, Regehr WG.

J Neurosci. 2014 May 28;34(22):7704-14. doi: 10.1523/JNEUROSCI.4694-13.2014.

3.

Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei.

Piñol RA, Bateman R, Mendelowitz D.

J Neurosci Methods. 2012 Sep 30;210(2):238-46. doi: 10.1016/j.jneumeth.2012.07.022. Epub 2012 Aug 7.

4.

Next-generation transgenic mice for optogenetic analysis of neural circuits.

Asrican B, Augustine GJ, Berglund K, Chen S, Chow N, Deisseroth K, Feng G, Gloss B, Hira R, Hoffmann C, Kasai H, Katarya M, Kim J, Kudolo J, Lee LM, Lo SQ, Mancuso J, Matsuzaki M, Nakajima R, Qiu L, Tan G, Tang Y, Ting JT, Tsuda S, Wen L, Zhang X, Zhao S.

Front Neural Circuits. 2013 Nov 26;7:160. doi: 10.3389/fncir.2013.00160. eCollection 2013.

5.

Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.

Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC.

J Neurophysiol. 2009 Jun;101(6):3075-88. doi: 10.1152/jn.00071.2009. Epub 2009 Apr 1.

7.

Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord.

Zhang Y, Yue J, Ai M, Ji Z, Liu Z, Cao X, Li L.

Spine (Phila Pa 1976). 2014 Jul 1;39(15):E865-9. doi: 10.1097/BRS.0000000000000373.

PMID:
25171072
8.

Optogenetic identification of striatal projection neuron subtypes during in vivo recordings.

Kravitz AV, Owen SF, Kreitzer AC.

Brain Res. 2013 May 20;1511:21-32. doi: 10.1016/j.brainres.2012.11.018. Epub 2012 Nov 21. Review.

9.

Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function.

Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G.

Nat Methods. 2011 Sep;8(9):745-52.

10.

Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.

Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E.

PLoS Comput Biol. 2013;9(9):e1003220. doi: 10.1371/journal.pcbi.1003220. Epub 2013 Sep 12.

11.

Use of channelrhodopsin for activation of CNS neurons.

Britt JP, McDevitt RA, Bonci A.

Curr Protoc Neurosci. 2012;Chapter 2:Unit2.16. doi: 10.1002/0471142301.ns0216s58.

12.

Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics.

Ji G, Neugebauer V.

Mol Brain. 2012 Oct 8;5:36. doi: 10.1186/1756-6606-5-36.

13.

Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.

Hayashi Y, Tagawa Y, Yawata S, Nakanishi S, Funabiki K.

Eur J Neurosci. 2012 Sep;36(6):2722-32. doi: 10.1111/j.1460-9568.2012.08191.x. Epub 2012 Jul 11.

PMID:
22780218
14.

Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex.

Miyashita T, Shao YR, Chung J, Pourzia O, Feldman DE.

Front Neural Circuits. 2013 Jan 31;7:8. doi: 10.3389/fncir.2013.00008. eCollection 2013.

15.

Channelrhodopsin as a tool to investigate synaptic transmission and plasticity.

Schoenenberger P, Schärer YP, Oertner TG.

Exp Physiol. 2011 Jan;96(1):34-9. doi: 10.1113/expphysiol.2009.051219. Epub 2010 Jun 18. Review.

16.

Computational modeling of channelrhodopsin-2 photocurrent characteristics in relation to neural signaling.

Stefanescu RA, Shivakeshavan RG, Khargonekar PP, Talathi SS.

Bull Math Biol. 2013 Nov;75(11):2208-40. doi: 10.1007/s11538-013-9888-4. Epub 2013 Sep 12.

PMID:
24026336
17.

High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice.

Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, Wang D, Zhang F, Boyden E, Deisseroth K, Kasai H, Hall WC, Feng G, Augustine GJ.

Proc Natl Acad Sci U S A. 2007 May 8;104(19):8143-8. Epub 2007 May 1.

18.

Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin.

Wen L, Wang H, Tanimoto S, Egawa R, Matsuzaka Y, Mushiake H, Ishizuka T, Yawo H.

PLoS One. 2010 Sep 23;5(9):e12893. doi: 10.1371/journal.pone.0012893.

19.

In vivo optogenetic control of striatal and thalamic neurons in non-human primates.

Galvan A, Hu X, Smith Y, Wichmann T.

PLoS One. 2012;7(11):e50808. doi: 10.1371/journal.pone.0050808. Epub 2012 Nov 30.

20.

The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials.

Grossman N, Simiaki V, Martinet C, Toumazou C, Schultz SR, Nikolic K.

J Comput Neurosci. 2013 Jun;34(3):477-88. doi: 10.1007/s10827-012-0431-7. Epub 2012 Nov 22.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk