Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 349

1.

Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta.

Karmonik C, Partovi S, Loebe M, Schmack B, Weymann A, Lumsden AB, Karck M, Ruhparwar A.

J Thorac Cardiovasc Surg. 2014 Apr;147(4):1326-1333.e1. doi: 10.1016/j.jtcvs.2013.09.069. Epub 2013 Dec 15.

2.

Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design.

Callington A, Long Q, Mohite P, Simon A, Mittal TK.

J Thorac Cardiovasc Surg. 2015 Sep;150(3):696-704. doi: 10.1016/j.jtcvs.2015.05.034. Epub 2015 May 15.

PMID:
26092505
3.

Comparison of hemodynamics in the ascending aorta between pulsatile and continuous flow left ventricular assist devices using computational fluid dynamics based on computed tomography images.

Karmonik C, Partovi S, Schmack B, Weymann A, Loebe M, Noon GP, Piontek P, Karck M, Lumsden AB, Ruhparwar A.

Artif Organs. 2014 Feb;38(2):142-8. doi: 10.1111/aor.12132. Epub 2013 Jul 25.

PMID:
23889366
4.

A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient-specific aortic model.

Caruso MV, Gramigna V, Rossi M, Serraino GF, Renzulli A, Fragomeni G.

Int J Numer Method Biomed Eng. 2015 Feb;31(2). doi: 10.1002/cnm.2700. Epub 2015 Feb 9.

PMID:
25514870
5.

Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach.

Karmonik C, Partovi S, Loebe M, Schmack B, Ghodsizad A, Robbin MR, Noon GP, Kallenbach K, Karck M, Davies MG, Lumsden AB, Ruhparwar A.

ASAIO J. 2012 Nov-Dec;58(6):562-7. doi: 10.1097/MAT.0b013e31826d6232.

PMID:
23013842
6.

In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery.

Sunagawa G, Byram N, Karimov JH, Horvath DJ, Moazami N, Starling RC, Fukamachi K.

J Thorac Cardiovasc Surg. 2015 Aug;150(2):343-8. doi: 10.1016/j.jtcvs.2015.04.015. Epub 2015 Apr 8.

PMID:
26204865
7.

Hemodynamic simulation study of a novel intra-aorta left ventricular assist device.

Xuan Y, Chang Y, Gu K, Gao B.

ASAIO J. 2012 Sep-Oct;58(5):462-9. doi: 10.1097/MAT.0b013e318268eaf7.

PMID:
22929899
8.

Surgical correction of aortic valve insufficiency after left ventricular assist device implantation.

Atkins BZ, Hashmi ZA, Ganapathi AM, Harrison JK, Hughes GC, Rogers JG, Milano CA.

J Thorac Cardiovasc Surg. 2013 Nov;146(5):1247-52. doi: 10.1016/j.jtcvs.2013.05.019. Epub 2013 Jul 16.

9.

Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk.

Osorio AF, Osorio R, Ceballos A, Tran R, Clark W, Divo EA, Argueta-Morales IR, Kassab AJ, DeCampli WM.

Comput Methods Biomech Biomed Engin. 2013;16(6):622-38. doi: 10.1080/10255842.2011.629616. Epub 2011 Dec 21.

PMID:
22185643
10.

Durability of central aortic valve closure in patients with continuous flow left ventricular assist devices.

McKellar SH, Deo S, Daly RC, Durham LA 3rd, Joyce LD, Stulak JM, Park SJ.

J Thorac Cardiovasc Surg. 2014 Jan;147(1):344-8. doi: 10.1016/j.jtcvs.2012.09.098. Epub 2012 Dec 13.

11.
12.

Ascending aorta outflow graft location and pulsatile ventricular assist provide optimal hemodynamic support in an adult mock circulation.

Litwak KN, Koenig SC, Cheng RC, Giridharan GA, Gillars KJ, Pantalos GM.

Artif Organs. 2005 Aug;29(8):629-35.

PMID:
16048479
13.

Investigation of hemodynamics in an in vitro system simulating left ventricular support through the right subclavian artery using 4-dimensional flow magnetic resonance imaging.

Jung B, Müller C, Buchenberg W, Ith M, Reineke D, Beyersdorf F, Benk C.

J Thorac Cardiovasc Surg. 2015 Jul;150(1):200-7. doi: 10.1016/j.jtcvs.2015.02.048. Epub 2015 Feb 28.

PMID:
25840754
14.

Control of ventricular unloading using an electrocardiogram-synchronized Thoratec paracorporeal ventricular assist device.

Amacher R, Weber A, Brinks H, Axiak S, Ferreira A, Guzzella L, Carrel T, Antaki J, Vandenberghe S.

J Thorac Cardiovasc Surg. 2013 Sep;146(3):710-7. doi: 10.1016/j.jtcvs.2012.12.048. Epub 2013 Jan 12.

15.

[Application of computational fluid dynamics in hemodynamic research of aortic arch].

Zhang T, Xiong J, Hu XZ, Jia X, Luan SL, Guo W.

Zhonghua Yi Xue Za Zhi. 2013 Jan 29;93(5):380-4. Chinese.

PMID:
23660214
16.

Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection.

Cheng Z, Riga C, Chan J, Hamady M, Wood NB, Cheshire NJ, Xu Y, Gibbs RG.

J Vasc Surg. 2013 Feb;57(2 Suppl):35S-43S. doi: 10.1016/j.jvs.2012.07.061.

17.

Natural history and clinical effect of aortic valve regurgitation after left ventricular assist device implantation.

Rajagopal K, Daneshmand MA, Patel CB, Ganapathi AM, Schechter MA, Rogers JG, Milano CA.

J Thorac Cardiovasc Surg. 2013 May;145(5):1373-9. doi: 10.1016/j.jtcvs.2012.11.066. Epub 2013 Jan 8.

18.

Effects on pre- and posttransplant pulmonary hemodynamics in patients with continuous-flow left ventricular assist devices.

John R, Liao K, Kamdar F, Eckman P, Boyle A, Colvin-Adams M.

J Thorac Cardiovasc Surg. 2010 Aug;140(2):447-52. doi: 10.1016/j.jtcvs.2010.03.006.

19.

Morphologic changes in the aortic wall media after support with a continuous-flow left ventricular assist device.

Segura AM, Gregoric I, Radovancevic R, Demirozu ZT, Buja LM, Frazier OH.

J Heart Lung Transplant. 2013 Nov;32(11):1096-100. doi: 10.1016/j.healun.2013.07.007. Epub 2013 Aug 19.

PMID:
23968812
20.

Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.

Medvitz RB, Kreider JW, Manning KB, Fontaine AA, Deutsch S, Paterson EG.

ASAIO J. 2007 Mar-Apr;53(2):122-31.

PMID:
17413548
Items per page

Supplemental Content

Write to the Help Desk