Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 79

1.

Reversible self-assembly of terpyridine-functionalized graphene oxide for energy conversion.

Song S, Xue Y, Feng L, Elbatal H, Wang P, Moorefield CN, Newkome GR, Dai L.

Angew Chem Int Ed Engl. 2014 Jan 27;53(5):1415-9. doi: 10.1002/anie.201309641. Epub 2013 Dec 11.

PMID:
24339196
[PubMed - in process]
2.

Functionalization of graphene for efficient energy conversion and storage.

Dai L.

Acc Chem Res. 2013 Jan 15;46(1):31-42. doi: 10.1021/ar300122m. Epub 2012 Oct 3.

PMID:
23030244
[PubMed]
3.

Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel.

Chen W, Li S, Chen C, Yan L.

Adv Mater. 2011 Dec 15;23(47):5679-83. doi: 10.1002/adma.201102838. Epub 2011 Nov 4.

PMID:
22052602
[PubMed - indexed for MEDLINE]
4.

Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.

Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA.

ACS Nano. 2010 Mar 23;4(3):1587-95. doi: 10.1021/nn901819n.

PMID:
20184383
[PubMed]
5.

Three-dimensional porous supramolecular architecture from ultrathin g-C(3)N(4) nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction.

Tian J, Ning R, Liu Q, Asiri AM, Al-Youbi AO, Sun X.

ACS Appl Mater Interfaces. 2014 Jan 22;6(2):1011-7. doi: 10.1021/am404536w. Epub 2014 Jan 8.

PMID:
24377299
[PubMed - in process]
6.

Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors.

Huang X, Sun B, Chen S, Wang G.

Chem Asian J. 2014 Jan;9(1):206-11. doi: 10.1002/asia.201301121. Epub 2013 Oct 15.

PMID:
24129981
[PubMed - in process]
7.

Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts.

Cristino V, Berardi S, Caramori S, Argazzi R, Carli S, Meda L, Tacca A, Bignozzi CA.

Phys Chem Chem Phys. 2013 Aug 21;15(31):13083-92. doi: 10.1039/c3cp52237g.

PMID:
23820552
[PubMed - indexed for MEDLINE]
8.

“Metal-free” catalytic oxygen reduction reaction on heteroatom- doped graphene is caused by trace metal impurities.

Wang L, Ambrosi A, Pumera M.

Angew Chem Int Ed Engl. 2013 Dec 16;52(51):13818-21. doi: 10.1002/anie.201309171.

PMID:
24490277
[PubMed - in process]
9.

An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks.

Shin YE, Sa YJ, Park S, Lee J, Shin KH, Joo SH, Ko H.

Nanoscale. 2014 Aug 21;6(16):9734-9741. Epub 2014 Jul 7.

PMID:
24998618
[PubMed - as supplied by publisher]
10.

Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction.

Jahan M, Bao Q, Loh KP.

J Am Chem Soc. 2012 Apr 18;134(15):6707-13. doi: 10.1021/ja211433h. Epub 2012 Apr 3.

PMID:
22439970
[PubMed]
11.

Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction.

Park M, Lee T, Kim BS.

Nanoscale. 2013 Dec 21;5(24):12255-60. doi: 10.1039/c3nr03581f.

PMID:
24146109
[PubMed - in process]
12.

Reversible supramolecular functionalization of surfaces: terpyridine ligands as versatile building blocks for noncovalent architectures.

Haensch C, Chiper M, Ulbricht C, Winter A, Hoeppener S, Schubert US.

Langmuir. 2008 Nov 18;24(22):12981-5. doi: 10.1021/la8026682. Epub 2008 Oct 17.

PMID:
18925754
[PubMed]
13.

Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction.

Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H.

Nat Mater. 2011 Oct;10(10):780-6. doi: 10.1038/nmat3087.

PMID:
21822263
[PubMed - indexed for MEDLINE]
14.

Assembly of graphene sheets into hierarchical structures for high-performance energy storage.

Yin S, Zhang Y, Kong J, Zou C, Li CM, Lu X, Ma J, Boey FY, Chen X.

ACS Nano. 2011 May 24;5(5):3831-8. doi: 10.1021/nn2001728. Epub 2011 Apr 29.

PMID:
21510618
[PubMed - indexed for MEDLINE]
15.

Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications.

Wan D, Yang C, Lin T, Tang Y, Zhou M, Zhong Y, Huang F, Lin J.

ACS Nano. 2012 Oct 23;6(10):9068-78. doi: 10.1021/nn303228r. Epub 2012 Sep 21.

PMID:
22984901
[PubMed - indexed for MEDLINE]
16.

In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures.

Chen W, Yan L.

Nanoscale. 2011 Aug;3(8):3132-7. doi: 10.1039/c1nr10355e. Epub 2011 Jun 23.

PMID:
21698339
[PubMed - indexed for MEDLINE]
17.

Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors.

Zhang W, Liu F, Li Q, Shou Q, Cheng J, Zhang L, Nelson BJ, Zhang X.

Phys Chem Chem Phys. 2012 Dec 21;14(47):16331-7. doi: 10.1039/c2cp43673f. Epub 2012 Nov 6.

PMID:
23132379
[PubMed]
18.

Graphene-assisted room-temperature synthesis of 2D nanostructured hybrid electrode materials: dramatic acceleration of the formation rate of 2D metal oxide nanoplates induced by reduced graphene oxide nanosheets.

Sung DY, Gunjakar JL, Kim TW, Kim IY, Lee YR, Hwang SJ.

Chemistry. 2013 May 27;19(22):7109-17. doi: 10.1002/chem.201300001. Epub 2013 Apr 4.

PMID:
23559338
[PubMed - indexed for MEDLINE]
19.

pH-responsive, DNA-directed reversible assembly of graphene oxide.

Qu K, Ren J, Qu X.

Mol Biosyst. 2011 Sep;7(9):2681-7. doi: 10.1039/c1mb05121k. Epub 2011 Jul 12.

PMID:
21748191
[PubMed - indexed for MEDLINE]
20.

Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage.

Su Y, Li S, Wu D, Zhang F, Liang H, Gao P, Cheng C, Feng X.

ACS Nano. 2012 Sep 25;6(9):8349-56. Epub 2012 Sep 5.

PMID:
22931096
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk