Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 250

1.

Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.

Shen W, Zhang X, Huang Q, Xu Q, Song W.

Nanoscale. 2014;6(3):1622-8. doi: 10.1039/c3nr05479a.

PMID:
24337051
2.

Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.

Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y.

Nanotechnology. 2011 Oct 21;22(42):425601. doi: 10.1088/0957-4484/22/42/425601. Epub 2011 Sep 22.

PMID:
21937786
3.

Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.

Deng D, Jin Y, Cheng Y, Qi T, Xiao F.

ACS Appl Mater Interfaces. 2013 May;5(9):3839-46. doi: 10.1021/am400480k. Epub 2013 Apr 23.

PMID:
23578010
4.

Electroless copper plating of inkjet-printed polydopamine nanoparticles: a facile method to fabricate highly conductive patterns at near room temperature.

Ma S, Liu L, Bromberg V, Singler TJ.

ACS Appl Mater Interfaces. 2014 Nov 26;6(22):19494-8. doi: 10.1021/am506102w. Epub 2014 Nov 5.

PMID:
25360833
5.

Reactive silver inks for patterning high-conductivity features at mild temperatures.

Walker SB, Lewis JA.

J Am Chem Soc. 2012 Jan 25;134(3):1419-21. doi: 10.1021/ja209267c. Epub 2012 Jan 5.

PMID:
22220580
6.

Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics.

Tai YL, Yang ZG.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17104-11. doi: 10.1021/acsami.5b03775. Epub 2015 Jul 29.

PMID:
26133543
7.

One-step inkjet printing of conductive silver tracks on polymer substrates.

Perelaer J, Hendriks CE, de Laat AW, Schubert US.

Nanotechnology. 2009 Apr 22;20(16):165303. doi: 10.1088/0957-4484/20/16/165303. Epub 2009 Mar 31.

PMID:
19420568
8.

Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings.

Öhlund T, Schuppert AK, Hummelgård M, Bäckström J, Nilsson HE, Olin H.

ACS Appl Mater Interfaces. 2015 Aug 26;7(33):18273-82. doi: 10.1021/acsami.5b03061. Epub 2015 Aug 13.

PMID:
26245645
9.

Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.

Vaseem M, McKerricher G, Shamim A.

ACS Appl Mater Interfaces. 2016 Jan 13;8(1):177-86. doi: 10.1021/acsami.5b08125. Epub 2015 Dec 29.

PMID:
26713357
10.

Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes.

Yu JS, Kim I, Kim JS, Jo J, Larsen-Olsen TT, Søndergaard RR, Hösel M, Angmo D, Jørgensen M, Krebs FC.

Nanoscale. 2012 Sep 28;4(19):6032-40. doi: 10.1039/c2nr31508d. Epub 2012 Aug 22.

PMID:
22915093
11.

Silver Ink Formulations for Sinter-free Printing of Conductive Films.

Black K, Singh J, Mehta D, Sung S, Sutcliffe CJ, Chalker PR.

Sci Rep. 2016 Feb 9;6:20814. doi: 10.1038/srep20814.

12.

Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.

Rager MS, Aytug T, Veith GM, Joshi P.

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):2441-8. doi: 10.1021/acsami.5b12156. Epub 2016 Jan 12.

PMID:
26720684
13.

The research of manufacture of flexible conductive tracks at room temperature.

Xin Z, Li L, Deng P, Yi F, Tang X, Zhao W, Du P.

J Nanosci Nanotechnol. 2011 Dec;11(12):10572-4.

PMID:
22408950
14.

Printed silver nanowire antennas with low signal loss at high-frequency radio.

Komoda N, Nogi M, Suganuma K, Kohno K, Akiyama Y, Otsuka K.

Nanoscale. 2012 May 21;4(10):3148-53. doi: 10.1039/c2nr30485f. Epub 2012 Apr 23.

PMID:
22522460
15.

Planar and three-dimensional printing of conductive inks.

Ahn BY, Walker SB, Slimmer SC, Russo A, Gupta A, Kranz S, Duoss EB, Malkowski TF, Lewis JA.

J Vis Exp. 2011 Dec 9;(58). pii: 3189. doi: 10.3791/3189.

16.

Triggering the sintering of silver nanoparticles at room temperature.

Magdassi S, Grouchko M, Berezin O, Kamyshny A.

ACS Nano. 2010 Apr 27;4(4):1943-8. doi: 10.1021/nn901868t.

PMID:
20373743
17.

Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films.

Kim C, Nogi M, Suganuma K, Yamato Y.

ACS Appl Mater Interfaces. 2012 Apr;4(4):2168-73. doi: 10.1021/am300160s. Epub 2012 Apr 4.

PMID:
22452572
18.

Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics.

Secor EB, Ahn BY, Gao TZ, Lewis JA, Hersam MC.

Adv Mater. 2015 Nov;27(42):6683-8. doi: 10.1002/adma.201502866. Epub 2015 Sep 30.

PMID:
26422363
19.

A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique.

Joo SJ, Park SH, Moon CJ, Kim HS.

ACS Appl Mater Interfaces. 2015 Mar 18;7(10):5674-84. doi: 10.1021/am506765p. Epub 2015 Mar 6.

PMID:
25714508
20.

Conductive inks with a "built-in" mechanism that enables sintering at room temperature.

Grouchko M, Kamyshny A, Mihailescu CF, Anghel DF, Magdassi S.

ACS Nano. 2011 Apr 26;5(4):3354-9. doi: 10.1021/nn2005848. Epub 2011 Apr 5.

PMID:
21438563
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk