Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 100

Similar articles for PubMed (Select 24322507)

1.

Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment.

Chan HF, Zhang Y, Ho YP, Chiu YL, Jung Y, Leong KW.

Sci Rep. 2013 Dec 10;3:3462. doi: 10.1038/srep03462.

2.

Mixed hydrogel bead-based tumor spheroid formation and anticancer drug testing.

Wang Y, Wang J.

Analyst. 2014 May 21;139(10):2449-58. doi: 10.1039/c4an00015c.

PMID:
24699505
3.

Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system.

Williams SK, Touroo JS, Church KH, Hoying JB.

Biores Open Access. 2013 Dec 1;2(6):448-54. doi: 10.1089/biores.2013.0046.

4.

Differentiation of human mesenchymal stem cell spheroids under microgravity conditions.

Cerwinka WH, Sharp SM, Boyan BD, Zhau HE, Chung LW, Yates C.

Cell Regen (Lond). 2012 Jun 28;1(1):2. doi: 10.1186/2045-9769-1-2. eCollection 2012.

5.

Modulation of the stemness and osteogenic differentiation of human mesenchymal stem cells by controlling RGD concentrations of poly(carboxybetaine) hydrogel.

Chien HW, Fu SW, Shih AY, Tsai WB.

Biotechnol J. 2014 Dec;9(12):1613-23. doi: 10.1002/biot.201300433. Epub 2014 Oct 31.

PMID:
25303097
6.

A programmable microenvironment for cellular studies via microfluidics-generated double emulsions.

Zhang Y, Ho YP, Chiu YL, Chan HF, Chlebina B, Schuhmann T, You L, Leong KW.

Biomaterials. 2013 Jun;34(19):4564-72. doi: 10.1016/j.biomaterials.2013.03.002. Epub 2013 Mar 21.

7.

In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids.

Lee BR, Hwang JW, Choi YY, Wong SF, Hwang YH, Lee DY, Lee SH.

Biomaterials. 2012 Jan;33(3):837-45. doi: 10.1016/j.biomaterials.2011.10.014. Epub 2011 Nov 3.

PMID:
22054535
8.

Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles.

Yoon S, Kim JA, Lee SH, Kim M, Park TH.

Lab Chip. 2013 Apr 21;13(8):1522-8. doi: 10.1039/c3lc41322e.

PMID:
23426090
9.

Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro.

Alessandri K, Sarangi BR, Gurchenkov VV, Sinha B, Kießling TR, Fetler L, Rico F, Scheuring S, Lamaze C, Simon A, Geraldo S, Vignjevic D, Doméjean H, Rolland L, Funfak A, Bibette J, Bremond N, Nassoy P.

Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14843-8. doi: 10.1073/pnas.1309482110. Epub 2013 Aug 26.

10.

Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane.

Lee KH, No da Y, Kim SH, Ryoo JH, Wong SF, Lee SH.

Lab Chip. 2011 Mar 21;11(6):1168-73. doi: 10.1039/c0lc00540a. Epub 2011 Feb 4.

PMID:
21298129
11.

Digital Microfluidics for Automated Hanging Drop Cell Spheroid Culture.

Aijian AP, Garrell RL.

J Lab Autom. 2014 Dec 15. pii: 2211068214562002. [Epub ahead of print]

PMID:
25510471
12.

Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration.

Huang GS, Tseng CS, Linju Yen B, Dai LG, Hsieh PS, Hsu SH.

Eur Cell Mater. 2013 Oct 13;26:179-94; discussion 194.

13.

Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.

Kim C, Chung S, Kim YE, Lee KS, Lee SH, Oh KW, Kang JY.

Lab Chip. 2011 Jan 21;11(2):246-52. doi: 10.1039/c0lc00036a. Epub 2010 Oct 21.

PMID:
20967338
14.

In vitro osteogenic differentiation of adipose-derived mesenchymal stem cell spheroids impairs their in vivo vascularization capacity inside implanted porous polyurethane scaffolds.

Laschke MW, Schank TE, Scheuer C, Kleer S, Shadmanov T, Eglin D, Alini M, Menger MD.

Acta Biomater. 2014 Oct;10(10):4226-35. doi: 10.1016/j.actbio.2014.06.035. Epub 2014 Jul 3.

PMID:
24998773
15.

Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.

Schuch A, Deiters P, Henne J, Köhler K, Schuchmann HP.

J Colloid Interface Sci. 2013 Jul 15;402:157-64. doi: 10.1016/j.jcis.2013.03.066. Epub 2013 Apr 11.

PMID:
23643254
16.

Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation.

Shen FH, Werner BC, Liang H, Shang H, Yang N, Li X, Shimer AL, Balian G, Katz AJ.

Spine J. 2013 Jan;13(1):32-43. doi: 10.1016/j.spinee.2013.01.002.

PMID:
23384881
17.

Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering.

Langenbach F, Naujoks C, Smeets R, Berr K, Depprich R, Kübler N, Handschel J.

Clin Oral Investig. 2013 Jan;17(1):9-17. doi: 10.1007/s00784-012-0763-8. Epub 2012 Jun 14. Review.

18.

Galactosylated reversible hydrogels as scaffold for HepG2 spheroid generation.

Wu Y, Zhao Z, Guan Y, Zhang Y.

Acta Biomater. 2014 May;10(5):1965-74. doi: 10.1016/j.actbio.2013.12.044. Epub 2013 Dec 29.

PMID:
24382516
19.

Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing.

Yu L, Chen MC, Cheung KC.

Lab Chip. 2010 Sep 21;10(18):2424-32. doi: 10.1039/c004590j. Epub 2010 Aug 6.

PMID:
20694216
20.

A multicellular spheroid formation and extraction chip using removable cell trapping barriers.

Jin HJ, Cho YH, Gu JM, Kim J, Oh YS.

Lab Chip. 2011 Jan 7;11(1):115-9. doi: 10.1039/c0lc00134a. Epub 2010 Nov 1.

PMID:
21038070
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk