Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 116


Heterogeneity and glycan masking of cell wall microstructures in the stems of Miscanthus x giganteus, and its parents M. sinensis and M. sacchariflorus.

Xue J, Bosch M, Knox JP.

PLoS One. 2013 Nov 29;8(11):e82114. doi: 10.1371/journal.pone.0082114. eCollection 2013.


Potential sources of high value chemicals from leaves, stems and flowers of Miscanthus sinensis 'Goliath' and Miscanthus sacchariflorus.

Parveen I, Wilson T, Donnison IS, Cookson AR, Hauck B, Threadgill MD.

Phytochemistry. 2013 Aug;92:160-7. doi: 10.1016/j.phytochem.2013.04.004. Epub 2013 May 9.


Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WG, Knox JP.

BMC Plant Biol. 2008 May 22;8:60. doi: 10.1186/1471-2229-8-60.


Cell wall polysaccharide distribution in Miscanthus lutarioriparius stem using immuno-detection.

Cao Y, Li J, Yu L, Chai G, He G, Hu R, Qi G, Kong Y, Fu C, Zhou G.

Plant Cell Rep. 2014 Apr;33(4):643-53. doi: 10.1007/s00299-014-1574-y. Epub 2014 Feb 13.


Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. x giganteus compared with M. sinensis and M. sacchariflorus.

Purdy SJ, Maddison AL, Jones LE, Webster RJ, Andralojc J, Donnison I, Clifton-Brown J.

Ann Bot. 2013 May;111(5):999-1013. doi: 10.1093/aob/mct059. Epub 2013 Mar 21.


Development of SCAR marker for simultaneous identification of Miscanthus sacchariflorus, M. sinensis and M. x giganteus.

Kim JK, An GH, Ahn SH, Moon YH, Cha YL, Bark ST, Choi YH, Suh SJ, Seo SG, Kim SH, Koo BC.

Bioprocess Biosyst Eng. 2012 Jan;35(1-2):55-9. doi: 10.1007/s00449-011-0592-1. Epub 2011 Nov 29.


Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus.

Ings J, Mur LA, Robson PR, Bosch M.

Front Plant Sci. 2013 Nov 25;4:468. doi: 10.3389/fpls.2013.00468. eCollection 2013.


Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.

da Costa RM, Lee SJ, Allison GG, Hazen SP, Winters A, Bosch M.

Ann Bot. 2014 Oct;114(6):1265-77. doi: 10.1093/aob/mcu054. Epub 2014 Apr 15.


Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan.

Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR.

Am J Bot. 2011 Jan;98(1):154-9. doi: 10.3732/ajb.1000258. Epub 2010 Dec 20.


Distribution of pectic epitopes in cell walls of the sugar beet root.

Guillemin F, Guillon F, Bonnin E, Devaux MF, Chevalier T, Knox JP, Liners F, Thibault JF.

Planta. 2005 Oct;222(2):355-71. Epub 2005 May 11.


Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation.

Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I, Clifton-Brown J.

J Exp Bot. 2013 Jan;64(2):541-52. doi: 10.1093/jxb/ers346. Epub 2012 Nov 26.


Monoclonal antibodies, carbohydrate-binding modules, and the detection of polysaccharides in plant cell walls.

Hervé C, Marcus SE, Knox JP.

Methods Mol Biol. 2011;715:103-13. doi: 10.1007/978-1-61779-008-9_7.


How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.

De Souza AP, Alvim Kamei CL, Torres AF, Pattathil S, Hahn MG, Trindade LM, Buckeridge MS.

J Exp Bot. 2015 Jul;66(14):4351-65. doi: 10.1093/jxb/erv183. Epub 2015 Apr 23.


Agronomic experiences with Miscanthus x giganteus in Illinois, USA.

Pyter R, Heaton E, Dohleman F, Voigt T, Long S.

Methods Mol Biol. 2009;581:41-52. doi: 10.1007/978-1-60761-214-8_3. Review.


Non-structural carbohydrate profiles and ratios between soluble sugars and starch serve as indicators of productivity for a bioenergy grass.

Purdy SJ, Maddison AL, Cunniff J, Donnison I, Clifton-Brown J.

AoB Plants. 2015 Mar 31;7. pii: plv032. doi: 10.1093/aobpla/plv032.


Epitope detection chromatography: a method to dissect the structural heterogeneity and inter-connections of plant cell-wall matrix glycans.

Cornuault V, Manfield IW, Ralet MC, Knox JP.

Plant J. 2014 May;78(4):715-22. doi: 10.1111/tpj.12504. Epub 2014 Apr 23.


Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

Verhertbruggen Y, Marcus SE, Chen J, Knox JP.

Plant Cell Physiol. 2013 Aug;54(8):1278-88. doi: 10.1093/pcp/pct074. Epub 2013 May 20.


In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

Blake AW, Marcus SE, Copeland JE, Blackburn RS, Knox JP.

Planta. 2008 Jun;228(1):1-13. doi: 10.1007/s00425-008-0713-5. Epub 2008 Feb 26.


Comparative in situ analyses of cell wall matrix polysaccharide dynamics in developing rice and wheat grain.

Palmer R, Cornuault V, Marcus SE, Knox JP, Shewry PR, Tosi P.

Planta. 2015 Mar;241(3):669-85. doi: 10.1007/s00425-014-2201-4. Epub 2014 Nov 22.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk