Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

TET3-OGT interaction increases the stability and the presence of OGT in chromatin.

Ito R, Katsura S, Shimada H, Tsuchiya H, Hada M, Okumura T, Sugawara A, Yokoyama A.

Genes Cells. 2014 Jan;19(1):52-65. doi: 10.1111/gtc.12107. Epub 2013 Dec 4.

2.

TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS.

Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F.

EMBO J. 2013 Mar 6;32(5):645-55. doi: 10.1038/emboj.2012.357. Epub 2013 Jan 25.

3.

Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT).

Zhang Q, Liu X, Gao W, Li P, Hou J, Li J, Wong J.

J Biol Chem. 2014 Feb 28;289(9):5986-96. doi: 10.1074/jbc.M113.524140. Epub 2014 Jan 6.

4.

TET2 promotes histone O-GlcNAcylation during gene transcription.

Chen Q, Chen Y, Bian C, Fujiki R, Yu X.

Nature. 2013 Jan 24;493(7433):561-4. doi: 10.1038/nature11742. Epub 2012 Dec 9.

5.

Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells.

Shi FT, Kim H, Lu W, He Q, Liu D, Goodell MA, Wan M, Songyang Z.

J Biol Chem. 2013 Jul 19;288(29):20776-84. doi: 10.1074/jbc.M113.460386. Epub 2013 May 31.

6.

Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT).

Bauer C, Göbel K, Nagaraj N, Colantuoni C, Wang M, Müller U, Kremmer E, Rottach A, Leonhardt H.

J Biol Chem. 2015 Feb 20;290(8):4801-12. doi: 10.1074/jbc.M114.605881. Epub 2015 Jan 7.

7.

Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.

Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, Cuomo A, Roberto A, Christensen J, Bonaldi T, Helin K, Pasini D.

Mol Cell. 2013 Feb 21;49(4):645-56. doi: 10.1016/j.molcel.2012.12.019. Epub 2013 Jan 24.

8.

Epigenetic regulation of a brain-specific glycosyltransferase N-acetylglucosaminyltransferase-IX (GnT-IX) by specific chromatin modifiers.

Kizuka Y, Kitazume S, Okahara K, Villagra A, Sotomayor EM, Taniguchi N.

J Biol Chem. 2014 Apr 18;289(16):11253-61. doi: 10.1074/jbc.M114.554311. Epub 2014 Mar 10.

9.

The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.

Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabó PE, Pfeifer GP, Li J, Xu GL.

Nature. 2011 Sep 4;477(7366):606-10. doi: 10.1038/nature10443.

PMID:
21892189
10.

Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules.

Liu N, Wang M, Deng W, Schmidt CS, Qin W, Leonhardt H, Spada F.

PLoS One. 2013 May 14;8(5):e62755. doi: 10.1371/journal.pone.0062755. Print 2013.

11.

[TET proteins and epigenetic modifications in cancers].

Ciesielski P, Jóźwiak P, Krześlak A.

Postepy Hig Med Dosw (Online). 2015 Dec 16;69:1371-83. Review. Polish.

12.

PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos.

Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T.

Nature. 2012 Jun 3;486(7403):415-9. doi: 10.1038/nature11093.

PMID:
22722204
13.

O-GlcNAcylation regulates EZH2 protein stability and function.

Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, Kang ML, Wong CH, Juan LJ.

Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1355-60. doi: 10.1073/pnas.1323226111. Epub 2014 Jan 13.

14.

Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX.

Ko M, An J, Bandukwala HS, Chavez L, Aijö T, Pastor WA, Segal MF, Li H, Koh KP, Lähdesmäki H, Hogan PG, Aravind L, Rao A.

Nature. 2013 May 2;497(7447):122-6. doi: 10.1038/nature12052. Epub 2013 Apr 7.

15.

Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development.

Xu Y, Xu C, Kato A, Tempel W, Abreu JG, Bian C, Hu Y, Hu D, Zhao B, Cerovina T, Diao J, Wu F, He HH, Cui Q, Clark E, Ma C, Barbara A, Veenstra GJ, Xu G, Kaiser UB, Liu XS, Sugrue SP, He X, Min J, Kato Y, Shi YG.

Cell. 2012 Dec 7;151(6):1200-13. doi: 10.1016/j.cell.2012.11.014.

16.

Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins.

Arioka Y, Watanabe A, Saito K, Yamada Y.

PLoS One. 2012;7(9):e45031. doi: 10.1371/journal.pone.0045031. Epub 2012 Sep 17.

17.

A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin.

Gambetta MC, Müller J.

Chromosoma. 2015 Dec;124(4):429-42. doi: 10.1007/s00412-015-0513-1. Epub 2015 Apr 18. Review.

18.

[TET-OGT interaction potentiates transcription by regulating histone H3 methylation].

Delatte B.

Med Sci (Paris). 2014 Jun-Jul;30(6-7):619-21. doi: 10.1051/medsci/20143006007. Epub 2014 Jul 11. French. No abstract available.

19.

Connections between TET proteins and aberrant DNA modification in cancer.

Huang Y, Rao A.

Trends Genet. 2014 Oct;30(10):464-74. doi: 10.1016/j.tig.2014.07.005. Epub 2014 Aug 14. Review.

20.

O-GlcNAc modification affects the ATM-mediated DNA damage response.

Miura Y, Sakurai Y, Endo T.

Biochim Biophys Acta. 2012 Oct;1820(10):1678-85. doi: 10.1016/j.bbagen.2012.06.013. Epub 2012 Jul 1.

PMID:
22759405
Items per page

Supplemental Content

Write to the Help Desk