Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Intermittent hypoxia exacerbates pancreatic β-cell dysfunction in a mouse model of diabetes mellitus.

Sherwani SI, Aldana C, Usmani S, Adin C, Kotha S, Khan M, Eubank T, Scherer PE, Parinandi N, Magalang UJ.

Sleep. 2013 Dec 1;36(12):1849-58. doi: 10.5665/sleep.3214.

2.

Impairment of pancreatic β-cell function by chronic intermittent hypoxia.

Wang N, Khan SA, Prabhakar NR, Nanduri J.

Exp Physiol. 2013 Sep;98(9):1376-85. doi: 10.1113/expphysiol.2013.072454. Epub 2013 May 24.

3.

Intermittent hypoxia reverses the diurnal glucose rhythm and causes pancreatic beta-cell replication in mice.

Yokoe T, Alonso LC, Romano LC, Rosa TC, O'Doherty RM, Garcia-Ocana A, Minoguchi K, O'Donnell CP.

J Physiol. 2008 Feb 1;586(3):899-911. Epub 2007 Nov 22.

4.

Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: partial improvement with cessation of the exposure.

Polak J, Shimoda LA, Drager LF, Undem C, McHugh H, Polotsky VY, Punjabi NM.

Sleep. 2013 Oct 1;36(10):1483-90; 1490A-1490B. doi: 10.5665/sleep.3040.

6.

Attenuation of glucose-induced insulin secretion by intermittent hypoxia via down-regulation of CD38.

Ota H, Tamaki S, Itaya-Hironaka A, Yamauchi A, Sakuramoto-Tsuchida S, Morioka T, Takasawa S, Kimura H.

Life Sci. 2012 Jan 30;90(5-6):206-11. doi: 10.1016/j.lfs.2011.11.011. Epub 2011 Dec 1.

PMID:
22154909
7.

Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice.

Kim JH, Stewart TP, Soltani-Bejnood M, Wang L, Fortuna JM, Mostafa OA, Moustaid-Moussa N, Shoieb AM, McEntee MF, Wang Y, Bechtel L, Naggert JK.

J Endocrinol. 2006 Nov;191(2):437-46.

8.

New insights into fatty acid modulation of pancreatic beta-cell function.

Haber EP, Procópio J, Carvalho CR, Carpinelli AR, Newsholme P, Curi R.

Int Rev Cytol. 2006;248:1-41. Review.

PMID:
16487789
9.

The effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia.

Shin MK, Han W, Bevans-Fonti S, Jun JC, Punjabi NM, Polotsky VY.

Respir Physiol Neurobiol. 2014 Nov 1;203:60-7. doi: 10.1016/j.resp.2014.08.018. Epub 2014 Aug 29.

10.

Time-dependent changes in glucose and insulin regulation during intermittent hypoxia and continuous hypoxia.

Lee EJ, Alonso LC, Stefanovski D, Strollo HC, Romano LC, Zou B, Singamsetty S, Yester KA, McGaffin KR, Garcia-Ocana A, O'Donnell CP.

Eur J Appl Physiol. 2013 Feb;113(2):467-78. doi: 10.1007/s00421-012-2452-3. Epub 2012 Jul 17.

11.

Pancreatic fat content and beta-cell function in men with and without type 2 diabetes.

Tushuizen ME, Bunck MC, Pouwels PJ, Bontemps S, van Waesberghe JH, Schindhelm RK, Mari A, Heine RJ, Diamant M.

Diabetes Care. 2007 Nov;30(11):2916-21. Epub 2007 Jul 31. Erratum in: Diabetes Care. 2008 Apr;31(4):835.

PMID:
17666465
12.

STAT5 activity in pancreatic beta-cells influences the severity of diabetes in animal models of type 1 and 2 diabetes.

Jackerott M, Møldrup A, Thams P, Galsgaard ED, Knudsen J, Lee YC, Nielsen JH.

Diabetes. 2006 Oct;55(10):2705-12.

13.

Insulin resistance causes increased beta-cell mass but defective glucose-stimulated insulin secretion in a murine model of type 2 diabetes.

Asghar Z, Yau D, Chan F, Leroith D, Chan CB, Wheeler MB.

Diabetologia. 2006 Jan;49(1):90-9. Epub 2005 Dec 15. Erratum in: Diabetologia. 2006 Mar;49(3):614.

PMID:
16362284
14.

Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function.

Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY.

Diabetes. 2001 Jan;50(1):69-76.

15.

Carotid body denervation prevents fasting hyperglycemia during chronic intermittent hypoxia.

Shin MK, Yao Q, Jun JC, Bevans-Fonti S, Yoo DY, Han W, Mesarwi O, Richardson R, Fu YY, Pasricha PJ, Schwartz AR, Shirahata M, Polotsky VY.

J Appl Physiol (1985). 2014 Oct 1;117(7):765-76. doi: 10.1152/japplphysiol.01133.2013. Epub 2014 Aug 7.

16.

Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons.

Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ, Majluf-Cruz A, Tene-Perez CE, Goldschmidt L, Hart J, Perego C, Comuzzie AG, Tejero ME, Finzi G, Placidi C, La Rosa S, Capella C, Halff G, Gastaldelli A, DeFronzo RA, Folli F.

Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13992-7. doi: 10.1073/pnas.0906471106. Epub 2009 Jul 30.

17.

Elevated circulating free fatty acids levels causing pancreatic islet cell dysfunction through oxidative stress.

Zhang X, Bao Y, Ke L, Yu Y.

J Endocrinol Invest. 2010 Jun;33(6):388-94. doi: 10.3275/6621. Epub 2009 Nov 12.

PMID:
19915385
18.

Intermittent hypoxia-induced rat pancreatic β-cell apoptosis and protective effects of antioxidant intervention.

Fang Y, Zhang Q, Tan J, Li L, An X, Lei P.

Nutr Diabetes. 2014 Sep 1;4:e131. doi: 10.1038/nutd.2014.28.

19.

Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes.

Lu H, Koshkin V, Allister EM, Gyulkhandanyan AV, Wheeler MB.

Diabetes. 2010 Feb;59(2):448-59. doi: 10.2337/db09-0129. Epub 2009 Nov 10.

20.

Impaired glucose homeostasis after a transient intermittent hypoxic exposure in neonatal rats.

Pae EK, Ahuja B, Kim M, Kim G.

Biochem Biophys Res Commun. 2013 Nov 22;441(3):637-42. doi: 10.1016/j.bbrc.2013.10.102. Epub 2013 Oct 29.

Items per page

Supplemental Content

Write to the Help Desk