Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 94

Similar articles for PubMed (Select 24260562)

1.

Classification of domain movements in proteins using dynamic contact graphs.

Taylor D, Cawley G, Hayward S.

PLoS One. 2013 Nov 18;8(11):e81224. doi: 10.1371/journal.pone.0081224. eCollection 2013.

2.

A comprehensive and non-redundant database of protein domain movements.

Qi G, Lee R, Hayward S.

Bioinformatics. 2005 Jun 15;21(12):2832-8. Epub 2005 Mar 31.

3.

Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.

Huan J, Bandyopadhyay D, Wang W, Snoeyink J, Prins J, Tropsha A.

J Comput Biol. 2005 Jul-Aug;12(6):657-71.

PMID:
16108709
4.

Protein domain organisation: adding order.

Kummerfeld SK, Teichmann SA.

BMC Bioinformatics. 2009 Jan 29;10:39. doi: 10.1186/1471-2105-10-39.

5.

Identification of domains and domain interface residues in multidomain proteins from graph spectral method.

Sistla RK, K V B, Vishveshwara S.

Proteins. 2005 May 15;59(3):616-26.

PMID:
15789418
6.

Graph sharpening plus graph integration: a synergy that improves protein functional classification.

Shin H, Lisewski AM, Lichtarge O.

Bioinformatics. 2007 Dec 1;23(23):3217-24. Epub 2007 Oct 31.

7.

'Double water exclusion': a hypothesis refining the O-ring theory for the hot spots at protein interfaces.

Li J, Liu Q.

Bioinformatics. 2009 Mar 15;25(6):743-50. doi: 10.1093/bioinformatics/btp058. Epub 2009 Jan 29.

8.

Database of ligand-induced domain movements in enzymes.

Qi G, Hayward S.

BMC Struct Biol. 2009 Mar 6;9:13. doi: 10.1186/1472-6807-9-13.

9.

A topological algorithm for identification of structural domains of proteins.

Emmert-Streib F, Mushegian A.

BMC Bioinformatics. 2007 Jul 3;8:237.

10.

A method for the analysis of domain movements in large biomolecular complexes.

Poornam GP, Matsumoto A, Ishida H, Hayward S.

Proteins. 2009 Jul;76(1):201-12. doi: 10.1002/prot.22339.

PMID:
19137621
11.

Molecular-dynamics simulation of domain movements in aspartate aminotransferase.

Kasper P, Sterk M, Christen P, Gehring H.

Eur J Biochem. 1996 Sep 15;240(3):751-5.

12.

Protein domain decomposition using a graph-theoretic approach.

Xu Y, Xu D, Gabow HN.

Bioinformatics. 2000 Dec;16(12):1091-104. Erratum in: Bioinformatics 2001 Mar;17(3):290. Gabow, H [corrected to Gabow, HN].

13.

Structural and functional analysis of multi-interface domains.

Zhao L, Hoi SC, Wong L, Hamp T, Li J.

PLoS One. 2012;7(12):e50821. doi: 10.1371/journal.pone.0050821. Epub 2012 Dec 14.

14.

Interdomain contact regions and angles between adjacent short consensus repeat domains.

Lehtinen MJ, Meri S, Jokiranta TS.

J Mol Biol. 2004 Dec 10;344(5):1385-96.

PMID:
15561150
15.

Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale.

Li H, Li J, Wong L.

Bioinformatics. 2006 Apr 15;22(8):989-96. Epub 2006 Jan 29.

16.

Hierarchical description and extensive classification of protein structural changes by Motion Tree.

Koike R, Ota M, Kidera A.

J Mol Biol. 2014 Feb 6;426(3):752-62. doi: 10.1016/j.jmb.2013.10.034. Epub 2013 Nov 2.

PMID:
24189051
17.

Markov clustering versus affinity propagation for the partitioning of protein interaction graphs.

Vlasblom J, Wodak SJ.

BMC Bioinformatics. 2009 Mar 30;10:99. doi: 10.1186/1471-2105-10-99.

18.

CATHEDRAL: a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures.

Redfern OC, Harrison A, Dallman T, Pearl FM, Orengo CA.

PLoS Comput Biol. 2007 Nov;3(11):e232.

19.

Docking protein domains in contact space.

Lise S, Walker-Taylor A, Jones DT.

BMC Bioinformatics. 2006 Jun 21;7:310.

20.

Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.

Huan J, Bandyopadhyay D, Prins J, Snoeyink J, Tropsha A, Wang W.

Comput Syst Bioinformatics Conf. 2006:227-38.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk