Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 442

1.

Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.

Yang YL, Chang CH, Huang CC, Kao WM, Liu WC, Liu HW.

Biomed Mater Eng. 2014;24(1):979-85. doi: 10.3233/BME-130893.

PMID:
24211987
2.

In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering.

Kim J, Jeong SY, Ju YM, Yoo JJ, Smith TL, Khang G, Lee SJ, Atala A.

Biomed Mater. 2013 Feb;8(1):014107. doi: 10.1088/1748-6041/8/1/014107. Epub 2013 Jan 25.

PMID:
23353783
3.

3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.

Liu Y, Huang Q, Feng Q.

Biomed Mater. 2013 Dec;8(6):065001. doi: 10.1088/1748-6041/8/6/065001. Epub 2013 Nov 14.

PMID:
24225162
4.

Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.

Xu M, Li Y, Suo H, Yan Y, Liu L, Wang Q, Ge Y, Xu Y.

Biofabrication. 2010 Jun;2(2):025002. doi: 10.1088/1758-5082/2/2/025002. Epub 2010 Mar 10.

PMID:
20811130
5.

Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.

Do─čan A, Demirci S, Bayir Y, Halici Z, Karakus E, Aydin A, Cadirci E, Albayrak A, Demirci E, Karaman A, Ayan AK, Gundogdu C, Sahin F.

Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:246-53. doi: 10.1016/j.msec.2014.08.035. Epub 2014 Aug 17.

PMID:
25280703
7.

Pretreatment of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide enhances osteoblastic differentiation and slows proliferation of mouse preosteoblast cells.

Carpizo KH, Saran MJ, Huang W, Ishida K, Roostaeian J, Bischoff D, Huang CK, Rudkin GH, Yamaguchi DT, Miller TA.

Plast Reconstr Surg. 2008 Feb;121(2):424-34. doi: 10.1097/01.prs.0000298366.74273.da.

PMID:
18300958
8.

Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications.

Wang Y, Shi X, Ren L, Yao Y, Zhang F, Wang DA.

J Biomed Mater Res B Appl Biomater. 2010 Apr;93(1):84-92. doi: 10.1002/jbm.b.31561.

PMID:
20091906
9.

Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.

Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS.

Biomaterials. 2006 Mar;27(8):1399-409. Epub 2005 Oct 5.

PMID:
16169074
10.

Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

Lv Q, Deng M, Ulery BD, Nair LS, Laurencin CT.

Clin Orthop Relat Res. 2013 Aug;471(8):2422-33. doi: 10.1007/s11999-013-2859-0.

11.

In vitro mineralization by preosteoblasts in poly(DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles.

Choi SW, Zhang Y, Thomopoulos S, Xia Y.

Langmuir. 2010 Jul 20;26(14):12126-31. doi: 10.1021/la101519b.

12.

Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering.

Parizek M, Douglas TE, Novotna K, Kromka A, Brady MA, Renzing A, Voss E, Jarosova M, Palatinus L, Tesarek P, Ryparova P, Lisa V, dos Santos AM, Warnke PH, Bacakova L.

Int J Nanomedicine. 2012;7:1931-51. doi: 10.2147/IJN.S26665. Epub 2012 Apr 17. Erratum in: Int J Nanomedicine. 2012;7:5873. Warnke, Patrick H [added].

13.

Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications.

Cheng Q, Rutledge K, Jabbarzadeh E.

Ann Biomed Eng. 2013 May;41(5):904-16. doi: 10.1007/s10439-012-0728-8. Epub 2013 Jan 3.

PMID:
23283475
14.

Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.

Wang F, Zhang YC, Zhou H, Guo YC, Su XX.

J Biomed Mater Res A. 2014 Mar;102(3):760-8. doi: 10.1002/jbm.a.34747. Epub 2013 Jun 1.

PMID:
23564567
15.

Physical properties and biocompatibility of a core-sheath structure composite scaffold for bone tissue engineering in vitro.

Wang C, Meng G, Zhang L, Xiong Z, Liu J.

J Biomed Biotechnol. 2012;2012:579141. doi: 10.1155/2012/579141. Epub 2012 Mar 15.

16.

Basic research on aw-AC/PLGA composite scaffolds for bone tissue engineering.

Minamiguchi S, Takechi M, Yuasa T, Momota Y, Tatehara S, Takano H, Miyamoto Y, Satomura K, Nagayama M.

J Mater Sci Mater Med. 2008 Mar;19(3):1165-72. Epub 2007 Aug 15.

PMID:
17701319
17.

Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.

Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP.

Biomed Mater. 2014 Jun;9(3):035001. doi: 10.1088/1748-6041/9/3/035001. Epub 2014 Mar 31.

PMID:
24687391
18.

Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.

Li M, Liu W, Sun J, Xianyu Y, Wang J, Zhang W, Zheng W, Huang D, Di S, Long YZ, Jiang X.

ACS Appl Mater Interfaces. 2013 Jul 10;5(13):5921-6. doi: 10.1021/am401937m. Epub 2013 Jun 27.

PMID:
23790233
19.

Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.

Igwe JC, Mikael PE, Nukavarapu SP.

J Tissue Eng Regen Med. 2014 Feb;8(2):131-42. doi: 10.1002/term.1506. Epub 2012 Jun 11.

PMID:
22689304
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk