Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Fuzzy speed function based active contour model for segmentation of pulmonary nodules.

Chen K, Li B, Tian LF, Zhu WB, Bao YH.

Biomed Mater Eng. 2014;24(1):539-47. doi: 10.3233/BME-130840.

PMID:
24211937
2.

Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

Li B, Chen K, Tian L, Yeboah Y, Ou S.

Comput Math Methods Med. 2013;2013:515386. doi: 10.1155/2013/515386. Epub 2013 Apr 16.

3.

Research on a pulmonary nodule segmentation method combining fast self-adaptive FCM and classification.

Liu H, Zhang CM, Su ZY, Wang K, Deng K.

Comput Math Methods Med. 2015;2015:185726. doi: 10.1155/2015/185726. Epub 2015 Apr 7.

4.

Shape-based computer-aided detection of lung nodules in thoracic CT images.

Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G.

IEEE Trans Biomed Eng. 2009 Jul;56(7):1810-20. doi: 10.1109/TBME.2009.2017027.

PMID:
19527950
5.

Segmentation of pulmonary nodules using adaptive local region energy with probability density function-based similarity distance and multi-features clustering.

Li B, Chen Q, Peng G, Guo Y, Chen K, Tian L, Ou S, Wang L.

Biomed Eng Online. 2016 May 5;15(1):49. doi: 10.1186/s12938-016-0164-3.

6.

Commercially available computer-aided detection system for pulmonary nodules on thin-section images using 64 detectors-row CT: preliminary study of 48 cases.

Yanagawa M, Honda O, Yoshida S, Ono Y, Inoue A, Daimon T, Sumikawa H, Mihara N, Johkoh T, Tomiyama N, Nakamura H.

Acad Radiol. 2009 Aug;16(8):924-33. doi: 10.1016/j.acra.2009.01.030. Epub 2009 Apr 25.

PMID:
19394873
7.

Automatic detection and segmentation of ground glass opacity nodules.

Zhou J, Chang S, Metaxas DN, Zhao B, Schwartz LH, Ginsberg MS.

Med Image Comput Comput Assist Interv. 2006;9(Pt 1):784-91.

PMID:
17354962
8.

Automated segmentation refinement of small lung nodules in CT scans by local shape analysis.

Diciotti S, Lombardo S, Falchini M, Picozzi G, Mascalchi M.

IEEE Trans Biomed Eng. 2011 Dec;58(12):3418-28. doi: 10.1109/TBME.2011.2167621. Epub 2011 Sep 12.

PMID:
21914567
9.

Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach.

Dehmeshki J, Amin H, Valdivieso M, Ye X.

IEEE Trans Med Imaging. 2008 Apr;27(4):467-80. doi: 10.1109/TMI.2007.907555.

PMID:
18390344
10.
11.

Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field.

Tan Y, Schwartz LH, Zhao B.

Med Phys. 2013 Apr;40(4):043502. doi: 10.1118/1.4793409.

12.

Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system.

Lin DT, Yan CR, Chen WT.

Comput Med Imaging Graph. 2005 Sep;29(6):447-58.

PMID:
15979278
13.
14.

Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.

Cascio D, Magro R, Fauci F, Iacomi M, Raso G.

Comput Biol Med. 2012 Nov;42(11):1098-109. doi: 10.1016/j.compbiomed.2012.09.002. Epub 2012 Sep 26.

PMID:
23020972
15.

[CT image segmentation based on automatic adaptive minimal fuzzy entropy measure].

Gong G, Feng C, Zhang H, Zhu Y.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Apr;25(2):304-8. Chinese.

PMID:
18610611
16.

A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.

Messay T, Hardie RC, Rogers SK.

Med Image Anal. 2010 Jun;14(3):390-406. doi: 10.1016/j.media.2010.02.004. Epub 2010 Feb 19.

PMID:
20346728
17.

Vessel tree reconstruction in thoracic CT scans with application to nodule detection.

Agam G, Armato SG 3rd, Wu C.

IEEE Trans Med Imaging. 2005 Apr;24(4):486-99.

PMID:
15822807
18.

[An algorithm based on deformable contour models for medical image segmentation].

Li H, Wang Z.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006 Aug;23(4):717-21. Chinese.

PMID:
17002092
19.

Soft computing approach to 3D lung nodule segmentation in CT.

Badura P, Pietka E.

Comput Biol Med. 2014 Oct;53:230-43. doi: 10.1016/j.compbiomed.2014.08.005. Epub 2014 Aug 16.

PMID:
25173811
20.

Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin- and thick-section CT.

Godoy MC, Kim TJ, White CS, Bogoni L, de Groot P, Florin C, Obuchowski N, Babb JS, Salganicoff M, Naidich DP, Anand V, Park S, Vlahos I, Ko JP.

AJR Am J Roentgenol. 2013 Jan;200(1):74-83. doi: 10.2214/AJR.11.7532.

PMID:
23255744
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk