Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 100

Similar articles for PubMed (Select 24187257)

1.

Redefining prosthetic ankle mechanics: non-anthropomorphic ankle design.

LaPrè AK, Sup F.

IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650439. doi: 10.1109/ICORR.2013.6650439.

PMID:
24187257
2.

Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.

Grabowski AM, D'Andrea S.

J Neuroeng Rehabil. 2013 Jun 7;10:49. doi: 10.1186/1743-0003-10-49.

3.

Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees.

Kobayashi T, Orendurff MS, Arabian AK, Rosenbaum-Chou TG, Boone DA.

J Biomech. 2014 Apr 11;47(6):1315-23. doi: 10.1016/j.jbiomech.2014.02.012. Epub 2014 Feb 14.

4.

Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.

Silver-Thorn B, Current T, Kuhse B.

Prosthet Orthot Int. 2012 Dec;36(4):435-42. doi: 10.1177/0309364612443379. Epub 2012 May 11.

PMID:
22581661
5.

The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait.

Zmitrewicz RJ, Neptune RR, Walden JG, Rogers WE, Bosker GW.

Arch Phys Med Rehabil. 2006 Oct;87(10):1334-9.

PMID:
17023242
6.

Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses.

Kobayashi T, Orendurff MS, Zhang M, Boone DA.

J Biomech. 2013 Apr 26;46(7):1343-50. doi: 10.1016/j.jbiomech.2013.01.026. Epub 2013 Mar 15.

PMID:
23499228
7.

Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses.

Russell Esposito E, Wilken JM.

Clin Biomech (Bristol, Avon). 2014 Dec;29(10):1186-92. doi: 10.1016/j.clinbiomech.2014.09.005. Epub 2014 Sep 18.

PMID:
25440576
8.

Controlling horizontal deceleration during gait termination in transfemoral amputees: measurements and simulations.

van Keeken HG, Vrieling AH, Hof AL, Postema K, Otten B.

Med Eng Phys. 2013 May;35(5):583-90. doi: 10.1016/j.medengphy.2012.07.002. Epub 2012 Aug 15.

PMID:
22901854
9.

Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.

Hill D, Herr H.

IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650375. doi: 10.1109/ICORR.2013.6650375.

PMID:
24187194
10.

The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait.

Major MJ, Twiste M, Kenney LP, Howard D.

Clin Biomech (Bristol, Avon). 2014 Jan;29(1):98-104. doi: 10.1016/j.clinbiomech.2013.10.012. Epub 2013 Oct 26.

PMID:
24238976
11.

Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.

Schneider K, Hart T, Zernicke RF, Setoguchi Y, Oppenheim W.

J Biomech. 1993 Oct;26(10):1191-204.

PMID:
8253824
12.

Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.

Wolf SI, Alimusaj M, Fradet L, Siegel J, Braatz F.

Clin Biomech (Bristol, Avon). 2009 Dec;24(10):860-5. doi: 10.1016/j.clinbiomech.2009.08.007. Epub 2009 Sep 9.

PMID:
19744755
13.

Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.

Au S, Berniker M, Herr H.

Neural Netw. 2008 May;21(4):654-66. doi: 10.1016/j.neunet.2008.03.006. Epub 2008 Apr 26.

PMID:
18499394
14.

Simulation of a powered ankle prosthesis with dynamic joint alignment.

LaPre AK, Umberger BR, Sup F.

Conf Proc IEEE Eng Med Biol Soc. 2014 Aug;2014:1618-21. doi: 10.1109/EMBC.2014.6943914.

PMID:
25570282
15.

The relative contributions of the prosthetic and sound limb to balance control in unilateral transtibial amputees.

Curtze C, Hof AL, Postema K, Otten B.

Gait Posture. 2012 Jun;36(2):276-81. doi: 10.1016/j.gaitpost.2012.03.010. Epub 2012 Apr 21.

PMID:
22525420
16.

Evaluation of a powered ankle-foot prosthetic system during walking.

Ferris AE, Aldridge JM, Rábago CA, Wilken JM.

Arch Phys Med Rehabil. 2012 Nov;93(11):1911-8. doi: 10.1016/j.apmr.2012.06.009. Epub 2012 Jun 22.

PMID:
22732369
17.

Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.

Seyedali M, Czerniecki JM, Morgenroth DC, Hahn ME.

J Neuroeng Rehabil. 2012 May 28;9:29. doi: 10.1186/1743-0003-9-29.

18.

Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping.

De Asha AR, Munjal R, Kulkarni J, Buckley JG.

J Neuroeng Rehabil. 2013 Oct 17;10:107. doi: 10.1186/1743-0003-10-107.

19.

Individual responses to alignment perturbations in socket reaction moments while walking in transtibial prostheses.

Kobayashi T, Orendurff MS, Zhang M, Boone DA.

Clin Biomech (Bristol, Avon). 2014 May;29(5):590-4. doi: 10.1016/j.clinbiomech.2014.04.002. Epub 2014 Apr 16.

PMID:
24792233
20.

A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait.

van der Linden ML, Solomonidis SE, Spence WD, Li N, Paul JP.

J Biomech. 1999 Sep;32(9):877-89.

PMID:
10460124
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk