Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 168

1.

Imaging of the macula indicates early completion of structural deficit in autosomal-dominant optic atrophy.

Rönnbäck C, Milea D, Larsen M.

Ophthalmology. 2013 Dec;120(12):2672-7. doi: 10.1016/j.ophtha.2013.08.008. Epub 2013 Oct 10.

PMID:
24120325
2.

Genotype-phenotype heterogeneity of ganglion cell and inner plexiform layer deficit in autosomal-dominant optic atrophy.

Rönnbäck C, Nissen C, Almind GJ, Grønskov K, Milea D, Larsen M.

Acta Ophthalmol. 2015 Dec;93(8):762-6. doi: 10.1111/aos.12835. Epub 2015 Sep 19.

PMID:
26385429
3.

Reduction of inner retinal thickness in patients with autosomal dominant optic atrophy associated with OPA1 mutations.

Ito Y, Nakamura M, Yamakoshi T, Lin J, Yatsuya H, Terasaki H.

Invest Ophthalmol Vis Sci. 2007 Sep;48(9):4079-86.

PMID:
17724190
4.

Correlation between visual acuity and OCT-measured retinal nerve fiber layer thickness in a family with ADOA and an OPA1 mutation.

Russo A, Delcassi L, Marchina E, Semeraro F.

Ophthalmic Genet. 2013 Mar-Jun;34(1-2):69-74. doi: 10.3109/13816810.2012.702259. Epub 2012 Jul 11.

PMID:
22779427
5.

Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects.

Rönnbäck C, Grønskov K, Larsen M.

Acta Ophthalmol. 2014 Nov;92(7):670-4. doi: 10.1111/aos.12378. Epub 2014 Mar 11.

6.

Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation.

Barboni P, Savini G, Cascavilla ML, Caporali L, Milesi J, Borrelli E, La Morgia C, Valentino ML, Triolo G, Lembo A, Carta A, De Negri A, Sadun F, Rizzo G, Parisi V, Pierro L, Bianchi Marzoli S, Zeviani M, Sadun AA, Bandello F, Carelli V.

Am J Ophthalmol. 2014 Sep;158(3):628-36.e3. doi: 10.1016/j.ajo.2014.05.034. Epub 2014 Jun 5.

PMID:
24907432
7.

Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age.

Barboni P, Savini G, Parisi V, Carbonelli M, La Morgia C, Maresca A, Sadun F, De Negri AM, Carta A, Sadun AA, Carelli V.

Ophthalmology. 2011 Oct;118(10):2076-80. doi: 10.1016/j.ophtha.2011.02.027. Epub 2011 May 31.

PMID:
21621262
8.

Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level.

Reis A, Mateus C, Viegas T, Florijn R, Bergen A, Silva E, Castelo-Branco M.

Graefes Arch Clin Exp Ophthalmol. 2013 Jan;251(1):221-34. doi: 10.1007/s00417-012-2112-7. Epub 2012 Aug 4.

PMID:
22865259
9.

Optical coherence tomography shows early loss of the inferior temporal quadrant retinal nerve fiber layer in autosomal dominant optic atrophy.

Park SW, Hwang JM.

Graefes Arch Clin Exp Ophthalmol. 2015 Jan;253(1):135-41. doi: 10.1007/s00417-014-2852-7. Epub 2014 Nov 19.

PMID:
25408424
10.

Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations.

Miyata K, Nakamura M, Kondo M, Lin J, Ueno S, Miyake Y, Terasaki H.

Invest Ophthalmol Vis Sci. 2007 Feb;48(2):820-4.

PMID:
17251483
11.

Axonal loss occurs early in dominant optic atrophy.

Milea D, Sander B, Wegener M, Jensen H, Kjer B, Jørgensen TM, Lund-Andersen H, Larsen M.

Acta Ophthalmol. 2010 May;88(3):342-6. doi: 10.1111/j.1755-3768.2008.01469.x. Epub 2009 Mar 19.

12.

SDOCT thickness measurements of various retinal layers in patients with autosomal dominant optic atrophy due to OPA1 mutations.

Schild AM, Ristau T, Fricke J, Neugebauer A, Kirchhof B, Sadda SR, Liakopoulos S.

Biomed Res Int. 2013;2013:121398. doi: 10.1155/2013/121398. Epub 2013 Aug 19.

13.

Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations.

Yu-Wai-Man P, Bailie M, Atawan A, Chinnery PF, Griffiths PG.

Eye (Lond). 2011 May;25(5):596-602. doi: 10.1038/eye.2011.2. Epub 2011 Mar 4.

14.

Ganglion cell loss in relation to visual disability in multiple sclerosis.

Walter SD, Ishikawa H, Galetta KM, Sakai RE, Feller DJ, Henderson SB, Wilson JA, Maguire MG, Galetta SL, Frohman E, Calabresi PA, Schuman JS, Balcer LJ.

Ophthalmology. 2012 Jun;119(6):1250-7. doi: 10.1016/j.ophtha.2011.11.032. Epub 2012 Feb 23.

15.

Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis.

Zaveri MS, Conger A, Salter A, Frohman TC, Galetta SL, Markowitz CE, Jacobs DA, Cutter GR, Ying GS, Maguire MG, Calabresi PA, Balcer LJ, Frohman EM.

Arch Neurol. 2008 Jul;65(7):924-8. doi: 10.1001/archneur.65.7.924.

PMID:
18625859
16.
17.

Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography.

Koh VT, Tham YC, Cheung CY, Wong WL, Baskaran M, Saw SM, Wong TY, Aung T.

Invest Ophthalmol Vis Sci. 2012 Aug 24;53(9):5853-9. doi: 10.1167/iovs.12-10414.

PMID:
22836772
18.

High-Resolution Imaging of the Optic Nerve and Retina in Optic Nerve Hypoplasia.

Pilat A, Sibley D, McLean RJ, Proudlock FA, Gottlob I.

Ophthalmology. 2015 Jul;122(7):1330-9. doi: 10.1016/j.ophtha.2015.03.020. Epub 2015 May 1.

19.

Papillomacular bundle and inner retinal thicknesses correlate with visual acuity in nonarteritic anterior ischemic optic neuropathy.

Rebolleda G, Sánchez-Sánchez C, González-López JJ, Contreras I, Muñoz-Negrete FJ.

Invest Ophthalmol Vis Sci. 2015 Jan 13;56(2):682-92. doi: 10.1167/iovs.14-15314.

PMID:
25587057
20.

Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas.

Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA.

Invest Ophthalmol Vis Sci. 2014 Mar 10;55(3):1402-8. doi: 10.1167/iovs.13-13119.

Items per page

Supplemental Content

Write to the Help Desk