Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Lymphocyte subsets in experimental rhinovirus infection in chronic obstructive pulmonary disease.

Mallia P, Message SD, Contoli M, Gray K, Telcian A, Laza-Stanca V, Papi A, Stanciu LA, Elkin S, Kon OM, Johnson M, Johnston SL.

Respir Med. 2014 Jan;108(1):78-85. doi: 10.1016/j.rmed.2013.09.010. Epub 2013 Sep 22.

2.

Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation.

Mallia P, Message SD, Gielen V, Contoli M, Gray K, Kebadze T, Aniscenko J, Laza-Stanca V, Edwards MR, Slater L, Papi A, Stanciu LA, Kon OM, Johnson M, Johnston SL.

Am J Respir Crit Care Med. 2011 Mar 15;183(6):734-42. doi: 10.1164/rccm.201006-0833OC. Epub 2010 Oct 1.

3.

Human rhinovirus proteinase 2A induces TH1 and TH2 immunity in patients with chronic obstructive pulmonary disease.

Singh M, Lee SH, Porter P, Xu C, Ohno A, Atmar RL, Greenberg SB, Bandi V, Gern J, Amineva S, Aminev A, Skern T, Smithwick P, Perusich S, Barrow N, Roberts L, Corry DB, Kheradmand F.

J Allergy Clin Immunol. 2010 Jun;125(6):1369-1378.e2. doi: 10.1016/j.jaci.2010.02.035.

4.
5.

Cytokine production by bronchoalveolar lavage T lymphocytes in chronic obstructive pulmonary disease.

Barczyk A, Pierzchała W, Kon OM, Cosio B, Adcock IM, Barnes PJ.

J Allergy Clin Immunol. 2006 Jun;117(6):1484-92. Epub 2006 Apr 3.

PMID:
16751017
6.

Distribution of γδ and other T-lymphocyte subsets in patients with chronic obstructive pulmonary disease and asthma.

Urboniene D, Babusyte A, Lötvall J, Sakalauskas R, Sitkauskiene B.

Respir Med. 2013 Mar;107(3):413-23. doi: 10.1016/j.rmed.2012.11.012. Epub 2012 Dec 25.

7.

Activation-induced cell death drives profound lung CD4(+) T-cell depletion in HIV-associated chronic obstructive pulmonary disease.

Popescu I, Drummond MB, Gama L, Coon T, Merlo CA, Wise RA, Clements JE, Kirk GD, McDyer JF.

Am J Respir Crit Care Med. 2014 Oct 1;190(7):744-55. doi: 10.1164/rccm.201407-1226OC.

8.

Analysis of bronchoalveolar lavage from human lung transplant recipients by flow cytometry.

Whitehead BF, Stoehr C, Finkle C, Patterson G, Theodore J, Clayberger C, Starnes VA.

Respir Med. 1995 Jan;89(1):27-34.

9.

Cytotoxic T cells expressing the co-stimulatory receptor NKG2 D are increased in cigarette smoking and COPD.

Roos-Engstrand E, Pourazar J, Behndig AF, Blomberg A, Bucht A.

Respir Res. 2010 Sep 24;11:128. doi: 10.1186/1465-9921-11-128.

10.

Oxidative and Nitrosative Stress and Histone Deacetylase-2 Activity in Exacerbations of COPD.

Footitt J, Mallia P, Durham AL, Ho WE, Trujillo-Torralbo MB, Telcian AG, Del Rosario A, Chang C, Peh HY, Kebadze T, Aniscenko J, Stanciu L, Essilfie-Quaye S, Ito K, Barnes PJ, Elkin SL, Kon OM, Wong WS, Adcock IM, Johnston SL.

Chest. 2016 Jan;149(1):62-73. doi: 10.1378/chest.14-2637. Epub 2016 Jan 6.

11.

[Deep lung--cellular reaction to HIV].

Tavares Marques MA, Alves V, Duque V, Botelho MF.

Rev Port Pneumol. 2007 Mar-Apr;13(2):175-212. Review. Portuguese.

PMID:
17492233
12.

Increased CD8 T-cell granzyme B in COPD is suppressed by treatment with low-dose azithromycin.

Hodge S, Hodge G, Holmes M, Jersmann H, Reynolds PN.

Respirology. 2015 Jan;20(1):95-100. doi: 10.1111/resp.12415. Epub 2014 Oct 12.

13.

Tolerogenic signaling by pulmonary CD1c+ dendritic cells induces regulatory T cells in patients with chronic obstructive pulmonary disease by IL-27/IL-10/inducible costimulator ligand.

Tsoumakidou M, Tousa S, Semitekolou M, Panagiotou P, Panagiotou A, Morianos I, Litsiou E, Trochoutsou AI, Konstantinou M, Potaris K, Footitt J, Mallia P, Zakynthinos S, Johnston SL, Xanthou G.

J Allergy Clin Immunol. 2014 Oct;134(4):944-954.e8. doi: 10.1016/j.jaci.2014.05.045. Epub 2014 Jul 19.

PMID:
25051954
14.

Imbalance between subpopulations of regulatory T cells in COPD.

Hou J, Sun Y, Hao Y, Zhuo J, Liu X, Bai P, Han J, Zheng X, Zeng H.

Thorax. 2013 Dec;68(12):1131-9. doi: 10.1136/thoraxjnl-2012-201956. Epub 2013 Jun 7.

PMID:
23749814
15.

Increased intraepithelial (CD103+) CD8+ T cells in the airways of smokers with and without chronic obstructive pulmonary disease.

Mikko M, Forsslund H, Cui L, Grunewald J, Wheelock AM, Wahlström J, Sköld CM.

Immunobiology. 2013 Feb;218(2):225-31. doi: 10.1016/j.imbio.2012.04.012. Epub 2012 May 4.

PMID:
22652413
16.

Influence of smoking cessation on airway T lymphocyte subsets in COPD.

Roos-Engstrand E, Ekstrand-Hammarström B, Pourazar J, Behndig AF, Bucht A, Blomberg A.

COPD. 2009 Apr;6(2):112-20. doi: 10.1080/15412550902755358.

PMID:
19378224
17.

Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking.

Barceló B, Pons J, Ferrer JM, Sauleda J, Fuster A, Agustí AG.

Eur Respir J. 2008 Mar;31(3):555-62. Epub 2007 Dec 5.

18.

Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease.

Mallia P, Footitt J, Sotero R, Jepson A, Contoli M, Trujillo-Torralbo MB, Kebadze T, Aniscenko J, Oleszkiewicz G, Gray K, Message SD, Ito K, Barnes PJ, Adcock IM, Papi A, Stanciu LA, Elkin SL, Kon OM, Johnson M, Johnston SL.

Am J Respir Crit Care Med. 2012 Dec 1;186(11):1117-24. doi: 10.1164/rccm.201205-0806OC. Epub 2012 Sep 28.

19.

Distribution of T-cell subsets in BAL fluid of patients with mild to moderate COPD depends on current smoking status and not airway obstruction.

Forsslund H, Mikko M, Karimi R, Grunewald J, Wheelock ÅM, Wahlström J, Sköld CM.

Chest. 2014 Apr;145(4):711-22. doi: 10.1378/chest.13-0873.

PMID:
24264182
Items per page

Supplemental Content

Write to the Help Desk